دورة السعام ۲۰۱۷ الاستثنائية الاثنين في ۷ آب ۲۰۱۷	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
الانتين في ۱۰۱۷ با	الفرع: علوم الحياة	المديرية العلمة للتربية دائرة الامتحانات الرسميّة
الاسم:	مسابقة في مادة الفيزياء	

الرقم:	المدة: ساعتان

تتألف هذه المسابقة من ثلاثة تمارين، موزّعة على ثلاث صفحات. يسمح باستعمال الة حاسبة غير قابلة للبرمجة.

التمرين الأول (٥,٦علامات) ايجاد سعة مكثف

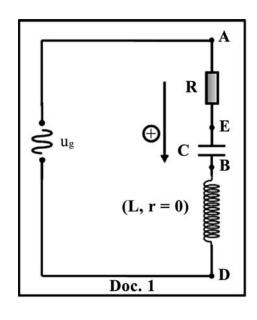
الهدف من هذا التُمرين هو ايجاد السعة C لمكثف. حققنا لهذا الهدف الداره المتمثلة بالمستند 1. تتألف هذه الداره من موصل

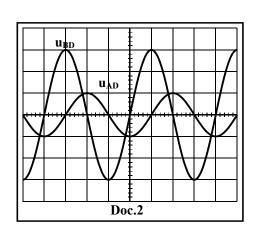
أومي مقاومته R، ملف كهربائي محاثته L ومقاومته r مهملة, مكثف سعته C

، موصولين على التوالي على طرفي مولد منخفض التردد

ويعطى توتر متناوب جيبى:

 $u_g=u_{AD}=U_m\cos(\omega t\)$; (u in V and t in s) يظهر راسم التذبذبات على القناة الأولى Y_1 التوتر u_{AD} على طرفي المولد .


ويظهر على القناة الثانية γ_2 التوتر $u_{BD} = u_{coil}$ على طرفي الملف (مستند۲).

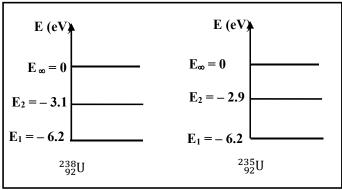

 $Sv_1 = 5 \text{ V/div}$ حساسية عمودية على القناة الأولى هي: $Sv_2 = 2 \text{ V/div}$ حساسية عمودية على القناة الثانية هي:

- ١) ارسم دارة المستند ١ مظهر اأسلاك تعليق راسم التذبذبات.
 - ٢) مستخدما رسوم تذبذبات المستند ٢،أوجد:
- $U_{m(coil)}$ على طرفي المولد، وعلى طرفي الملف U_{m} على طرفي المولد، وعلى طرفي الملف المردد
 - ٢-٢) فرق الطور بين هذين التوترين.
 - $^{\circ}$ اكتب كدالة من الزمن $^{\circ}$ والنبض $^{\circ}$ ، صيغة التوتر على طرفي الملف $^{\circ}$. u_{coil}
 - $i=\frac{9.375\pi}{\omega}\cos(\omega t)$ ميغة التيارفي الداره هي (i in A; t in s)

أوجد كدالة من L, a,t ،صيغة التوتر على طرفي الملف UBD.

- ه) مستخدما السؤال ٣و٤، برهن أن L=0.204H .
 - ري and i حدد قيمة فرق الطور بين
- ٧) هناك ظاهرة تحدث في هذه الداره. سمّ هذه الظاهرة.
 - $^{\wedge}$ استنتج قیمهٔ C اذا کان $^{\circ}$ استنتج قیمهٔ C

التمرين الثاني (٦,٥ علامات) تأين وانشطار اليورانيوم


الهدف من هذا التمرين هو دراسة تأين وانشطار نظير اليورانيوم.

معطبات:

 $1 \text{ eV} = 1.6 \times 10^{-19} \, \text{J}$; speed of light in vacuum: $c = 3 \times 10^8 \, \text{m/s}$; Planck's constant: $h = 6.6 \times 10^{-34} \, \text{J.s.}$ Mass of $^{235}_{92} \, \text{U}$ nucleus = $234.99342 \, \text{u}$; $1 \text{u} = 1.66 \times 10^{-27} \, \text{kg.}$

١- تأين احد نظائر اليورانيوم

 $_{235}^{235}$ U and $_{92}^{238}$ U $_{92}^{235}$ U and $_{92}^{238}$ U اليورانيوم بتردد $_{02}^{238}$ U and موحد بتردد $_{03}^{238}$ U and موحد بتردد

Doc.1

- ۱-۱) احسب بـ in Joules and in eV طاقة فوتون من الاشعاع المرسل
 - ردد المستند البعض مستويات طاقة النظائر $U_{_{92}}^{_{235}}$.

تستطيع هذه الفوتونات ان تثير احد نظائر اليورانيوم

من مستوى الطاقة E₁ الى مستوى الطاقة E₂. حدّد أيّ من النظيرين سيستثار.

 ν النظير المثار، وقبل ان يخمد، تلقى فوتون بنفس التردد ν .

١-٣-١) برهن ان هذا النظير سوف يتأيّن.

١-٣-٢) أوجد الطاقة الحركية القصوى للإكترون المحرر.

١-٤) توضح هذه التجربة إحدى هيئتي الضوء سمّ هذه الهيئة.

٢- تفاعل نووي

نظير اليورانيوم الذي يخضع للانشطار في محطة نووية هو اليورانيوم 235. يعطى انشطار هذا اليورانيوم بـ:

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{90}_{36}$ Kr + $^{X}_{56}$ Ba + 8^{1}_{0} n + γ

- ١-٢) لماذا يعتبر هذا التفاعل، تفاعلا محدثا(غير تلقائي)؟
- ٢-٢) ما هو الشرط الذي يجب ان يستوفيه المقذوف لتحقيق هذا التفاعل؟
 - ۲-۲) استخدم احد قوانين الانحفاظ لإيجاد قيمة x.
- ٤-٢) الطاقة المحررة بانشطار كل نواة يورانيوم 235 هي حوالي MeV .حدّد بأي أشكل تظهر هذه الطاقة.
- ٥-٢-) محطة نووية، مردودها ٤٠% تنتج قدرة كهربائية 600MW .احسب بـ kg،كتلة اليورانيوم المستهلك يوميا في هذه المحطة

التمرين الثالث (٧علامات) ايجاد كتلة جسم وصلادة نابض

وضعنا نابض (R) كتلته مهملة، ثابت صلادته K وجسمين (K)و(K)كتلتهما K و الهدف من هذا التمرين ه

أهمل كل قوى الاحتكاك وخذ g=10m/s².

1- التجربة الأولى: ايجاد mA

وضعنا النابض على سكة افقية. (R) مضغوط بين (A)و(B) بواسطة خيط كتلته مهملة (مستند١).

يتواجد مركزا الكتلتين (A) و (B)بنفس السطح الأفقي، الذي يؤخذ كمستوى مرجعي لطاقة الجاذبية الكامنة.

يتوجه الاتجاه الموجب للمحور

X'X الى اليمين.

أشعلنا الخيط، (A)و (B) أطلقتا باتجاهين متعاكسين.

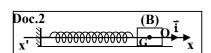
- ۱-۱) سمّ القوى الخارجية المبذولة على الجهاز [(A), (B) and (R)].
- 1-1) استنتج ان كمية حركة الجهاز [(A), (B) and (R)] هي محفوظة خلال الحركة على السكة الافقية .

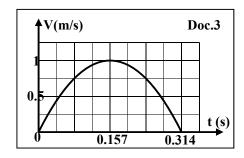
(B)

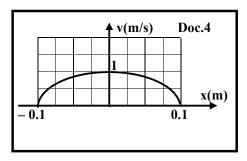
Doc. 1

- . $\vec{V}_B = 0.75\vec{i}$ (m/s) سرعة مركز كتلة الجسم B تماما بعد الاطلاق هي (۳-۲) و $\vec{V}_B = 0.75\vec{i}$. اوجد كمية الحركة \vec{P}_A للجسم (A).
- . m_A استنتج السرعة \vec{V}_A لمركز كتلة (A) تماما بعد الاطلاق كدالة من \vec{V}_A
- داء) يتابع الجسم (A) حركته ويصل الى طريق منحني CD موجود في مسطح عمودي (مستند ۱) . الارتفاع الأقصى الذي يصل اليه مركز كتلة (A) هو $h_{max} = 5$ cm فوق المستوى المرجعي.
 - 1-2-1) أوجد قيمة السرعة VA مطبقا مبدأ حفظ الطاقة الميكانكية لجهاز [ارض, (A)] .
 - ۱-٤-۱) استنتج قيمة الكتلة ma.

٢- التجربة الثانية: ايجاد K


ثبتنا الجسم (B) بطرف النابض (R) ،وعلقتا طرف النابض الاخر بحمالة ثابته.


أزيح مركز كتلة G للجسم (B) مسافة X_m انطلاقا من موضع توازنه O على طول المحور (\vec{t}) في الاتجاه السالب، وترك في اللحظة $t_0=0$ بدون سرعة ابتدائية. في اللحظة $t_0=0$ مركز كتلة $t_0=0$ احداثي $t_0=0$ وسرعة جبرية $t_0=0$


خلال حركة (B) بين $t_0 = 0$ و $t_0 = 0$ هو الزمن الدوري الذاتي لاهتزازات (B))،يقوم جهاز خاص برسم المستندين $t_0 = 0$. مستند $t_0 = 0$ كدالة زمنية .

مستند ٤: يظهر تغير سرعة G كدالة من X.

- ا ي الله الطاقة الحركية القصوى لـ (B) ،اعتمادا على العامدا على
 - ٢-٢) استنتج قيمة الطاقة الكامنة المرنة القصوى لجهاز [(B)ارض]
 - ٢-٢) أعط قيمة Xm ، مستخدما المستندع.
 - ٤-٢) استنتج قيمة **K** .

