دورة الـعام Y Y العاديّة	امتحانات الثهادة الثانوية العامة	وزارة التربية والتّلـيّ
r.lV الخميس 10 حزيران	الفرع: علوم عامة	المديرية العامة للتربية
		دائرة الامتحانـات الرسميّة

الاسم:

مسـابقة في مـادة الكيمياء
الرقم:
المدة: سـاعتان

This Exam Includes Three Exercises. It Is Inscribed on 4 Pages Numbered From 1 to 4. The Use of A Non-programmable Calculator is Allowed
 Answer The Three Following Exercises:

Exercise 1 (6 points) Identification of an organic compound

Available is an organic compound (A) of molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ of a saturated non cyclic carbon chain. The aim of this exercise is to identify compound (A) in order to prepare an ester (E).

1. Identification of The Compound (A)

The compound (A) is subjected to the two tests in document- 1 .

| Chemical Test | Experimental Result |
| :---: | :---: | :---: |
| Test 1: \quad (A)+ DNPH | Formation of yellow-orange precipitate |
| Test 2: \quad (A)+ Fehling reagent | Formation of brick-red precipitate |

Document-1

1.1. Interpret the result of each of these two tests.
1.2. Write the possible condensed structural formulas of the compound (A).
1.3. Name compound (A) knowing that the carbon chain is non-branched.

2. Preliminary Study

(B) and (C) are two organic compounds used in preparation of the ester (E).
(B) is obtained by catalytic hydrogenation of a sample of the compound (A).
(C) is obtained by mild oxidation of another sample of the compound (A).
2.1. Write, using condensed structural formulas, the equation of the reaction of formation of product (B). Name it.
2.2. Identify the organic compound (C).

3. Esterification Reaction

An equimolar mixture of the compounds (B) and (C) is heated to reflux in the presence of few drops of concentrated sulfuric acid.
3.1- Indicate the role of sulfuric acid.
3.2- Give the condensed structural formula and the name of the ester (E) obtained during this reaction.
3.3- The carboxylic acid used in the preparation of the ester (E) is replaced by its chlorinated derivative.
3.3.1. Identify the derivative used.
3.3.2. Choose, from the three following propositions, the one that corresponds to the characteristics of the above reaction:
a- complete and athermic b-slow and athermic c- complete and exothermic
3.3.3. Write, using condensed structural formulas of the organic compounds, the equation of the reaction of formation of the ester (E) in this case.

Exercise 2 (7points) Sodium Thiosulfate and Hydrochloric Acid

In acidic medium, thiosulfate ions $\left(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right)$ react slowly and completely with the hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$, according to the following equation:

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(\mathrm{aq})+2 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+} \rightarrow \mathrm{S}_{(\mathrm{S})}+\mathrm{SO}_{2(\mathrm{aq})}+3 \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

In order to study the kinetic of the above reaction, the following experiment is carried out, At the instant $\mathrm{t}=0$, a volume $\mathrm{V}_{1}=10.0 \mathrm{ml}$ of a hydrochloric acid solution $\left(\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C} \boldsymbol{\ell}\right)$ of concentration $\mathrm{C}_{1}=5.0 \mathrm{~mol} . \mathrm{L}^{-1}$ is poured into a beaker containing a volume $\mathrm{V}_{2}=40.0 \mathrm{ml}$ of a sodium thiosulfate solution $\left(2 \mathrm{Na}^{+}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right)$ of a concentration $\mathrm{C}_{2}=0.5 \mathrm{~mol} . \mathrm{L}^{-1}$.
By an appropriate method the evolution of this reaction is followed and the concentration of the thiosulfate ions is determined at different instants.
The results are grouped in the table of document-1.

$\mathrm{t}(\mathrm{s})$	15	30	60	90	150	210	300
$\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right] \mathrm{mol} . \mathrm{L}^{-1}$	0.32	0.26	0.18	0.12	0.06	0.032	0.012

Document-1

1. Preliminary Study

1.1. Show that the initial concentration of the thiosulfate ions is $\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{0}=0.40 \mathrm{~mol} . \mathrm{L}^{-1}$ and that of hydronium ions is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{o}}=1.0 \mathrm{~mol} . \mathrm{L}^{-1}$ in the reactional mixture.
1.2. Identify the limiting reactant.

2. Kinetic Follow-up

2.1. Plot the curve representing the variation of the concentration of thiosulfate ions as a function of time $\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]=\mathrm{f}(\mathrm{t})$ within the time interval: $[0-300 \mathrm{~s}]$. Take the following scales:
abscissa: 1 cm for $30 \mathrm{~s} \quad$ ordinate: 1 cm for $0.04 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$.
2.2. Determine, graphically, the half-life time $t_{1 / 2}$.
2.3. Show that at instant $\mathrm{t}=\mathrm{t}_{1 / 2}$ the concentration of hydronium ions, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{t_{1 / 2}}$, is given by the following relation:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{t}_{1 / 2}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{o}}-\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{\mathrm{o}}
$$

2.4. Deduce the value of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{t_{1 / 2}}$.
2.5. Choose among the three graphs of document-2 the one that corresponds to the shape of the curve that represents the variation of the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions as a function of time. Justify.

3. Kinetic Factors

To highlight the effects of the kinetic factors on the duration of this reaction.The three experiments represented in document-3 are carried out, where Δt represents the end time of the reaction in each experiment.

	$\left[\mathbf{S}_{\mathbf{2}} \mathbf{O}_{3}^{2-}\right]_{\mathbf{0}}$	$\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right]_{\mathbf{0}}$	Temperature $\left({ }^{\mathbf{0}} \mathbf{C}\right)$	Time (\mathbf{t})
Experiment 1	$0.4 \mathrm{~mol} . \mathrm{L}^{-1}$	$1 \mathrm{~mol} . \mathrm{L}^{-1}$	40	$\Delta \mathrm{t}_{1}$
Experiment 2	$0.4 \mathrm{~mol} . \mathrm{L}^{-1}$	$1 \mathrm{~mol} . \mathrm{L}^{-1}$	20	$\Delta \mathrm{t}_{2}$
Experiment 3	$0.2 \mathrm{~mol} . \mathrm{L}^{-1}$	$1 \mathrm{~mol} . \mathrm{L}^{-1}$	40	$\Delta \mathrm{t}_{3}$

Document-3

Compare $\Delta \mathrm{t}_{2}$ and $\Delta \mathrm{t}_{1}$ as well as $\Delta \mathrm{t}_{3}$ and $\Delta \mathrm{t}_{1}$.Justify.

Exercice 3 (7 points)
 Acid-Base Reactions

The aim of this exercise is to identify aqueous solutions in order to realize a pH -metric study of an acid-base mixture.

Acid/Base pair	$\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	$\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$
pKa	0	4.2	9.2

- The study is carried out at $25^{\circ} \mathrm{C}$.

Document-1

1. Identification of Aqueous Solutions

Available are three beakers numbered 1,2 and 3 . Beaker 1 contains a hydrochloric acid solution $\left(\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}^{-}\right)$. One of the two other beakers contains an aqueous solution of sodium benzoate $\left(\mathrm{Na}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right)$and the other beaker contains an aqueous ammonia solution NH_{3}.

All of the above three solutions have the same molar concentration \mathbf{C}.
The pH of each solution is measured. The results are grouped in the table of document-2.

Number of beaker	1	2	3
$\mathbf{p H}$	1.3	11	8.5

Document-2
1.1. Show that the concentration C is equal to $5.0 \times 10^{-2} \mathrm{~mol} . \mathrm{L}^{-1}$.
1.2. Identify, by referring to documents (1) and (2), the solution contained in each of the two beakers 2 and 3.
1.3. The ammonia solution of concentration C is prepared from a commercial solution $\left(S_{o}\right)$ of concentration $\mathrm{C}_{0}=10 \mathrm{~mol} . \mathrm{L}^{-1}$.
Choose, by justifying, from the following two sets a and b of document- 3 the appropriate one for the above preparation.

2. pH-metric Follow-up

The hydrochloric acid solution of concentration C is added progressively into a beaker containing a volume $\mathrm{V}_{\mathrm{b}}=20.0 \mathrm{ml}$ of solution of ammonia of concentration C .
2.1. Write the equation of the reaction that takes place between $\mathrm{H}_{3} \mathrm{O}^{+}$ions and NH_{3}.
2.2. Show that this reaction is complete.
2.3. Determine the volume, V_{E}, of the acid solution added at equivalence.
2.4. Choose among the three following values:

$$
\mathrm{pH}_{1}=2 ; \mathrm{pH}_{2}=7 ; \mathrm{pH}_{3}=11
$$

the one that corresponds to the pH value of the solution obtained after the addition of a volume of the acid equal to 30 mL . Justify without calculation.
2.5. Plot the shape of the curve that represents the variation of pH as a function of the volume of the hydrochloric acid added:
$\mathrm{pH}=\mathrm{f}\left(\mathrm{V}_{\mathrm{a}}\right)$, passing through the points of abscissa : $\mathrm{V}_{\mathrm{a}}=0 ; \mathrm{V}_{\mathrm{a}}=\frac{V_{E}}{2} ; \mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{E}}$ and $\mathrm{V}_{\mathrm{a}}=30 \mathrm{~mL}$.
Take the following scale: abscissa 1 cm for 2 mL and ordinate 1 cm for 1 pH unit.
(Knowing that the pH at equivalence is equal to 5.4)

دورة العام 2017 العاديةّ	امتحانـات الشُهادة الثُانويـة العامـة فرع : علوم عامـة	وزارة التتربيةٌ والتُعليم الـعالّي المديريـة العامـة للتربية دائرة الامتحانـات
الرقم : الاسم :	مسـابقةٌ فّي مـادةٌ الكيمياء المدة : ساعتان	مشروع معيار التصحيح

Exercice 2 (7 pts) Sodium Thiosulfate and Hydrochloric aci		
Part of the Q .	Answers	Mark
1.1.	$\begin{aligned} & {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{0}=\frac{n_{H_{3} \mathrm{O}^{+}}}{V_{\text {total }}}=\frac{C_{1} V_{1}}{V_{1}+V_{2}}=\frac{5 \times 10.10^{-3}}{50 \cdot 10^{-3}}=1 \mathrm{~mol} \cdot \mathrm{~L}^{-1}} \\ & {\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]=\frac{n_{S_{2} \mathrm{O}_{3}^{2-}}}{V_{\text {total }}}=\frac{C_{2} V_{2}}{V_{1}+V_{2}}=\frac{0,5 \times 40 \cdot 10^{-3}}{50.10^{-3}}=0,4 \mathrm{~mol} \cdot \mathrm{~L}^{-1}} \end{aligned}$	1
1.2.	$R_{H_{3} O^{+}}=\frac{n_{H_{3} O_{0}^{+}}}{2}=\frac{0,05}{2}=25.10^{-3}>R_{S_{2} O_{3}^{--}}=\frac{n_{S_{2} O_{3}^{2-0}}}{1}=20.10^{-3}$	0.75

	$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ is the limiting reactant	
2.1.		1
2.2.	Half time :is the time needed for the limiting reactant to lose half of its initial value. $\frac{\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{0}}{2}=\frac{0,4}{2}=0,2 \mathrm{~mol} \cdot \mathrm{~L}^{-1}$ Graphically $\mathrm{t}_{1 / 2}=52 \mathrm{~s}$	0.75
2.2.	At each instant of time t : $\mathrm{n}_{\mathrm{H}_{3} \mathrm{O}^{+} \text {remained }}=\mathrm{n}_{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{o})}-\mathrm{n}_{\mathrm{H}_{3} \mathrm{O}^{+} \text {react }}$ $\frac{n\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)_{\text {react }}}{2}=\frac{n\left(\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right)_{\text {react }}}{1}$ $\mathrm{n}_{\mathrm{H}_{3} \mathrm{O}^{+} \text {react }}^{+}=2 \mathrm{n}_{\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \text { react }}$ $n_{\mathrm{H} 3 \mathrm{O}^{+}}{ }_{\text {remain }}=\mathrm{n}_{\mathrm{H} 3 \mathrm{O}}{ }^{+}{ }_{\mathrm{o}}-2 \mathrm{n}_{\mathrm{S} 2 \mathrm{O}_{3}^{2-} \text { react }}$ At $\mathrm{t}_{1 / 2}$: $n_{H_{3} O^{+} \text {restant }}=n_{H_{3} O_{o}^{+}}-\frac{2 n_{S_{2} O_{3}^{2-} o}}{2}=n_{H_{3} O_{o}^{+}}-n_{S_{2} O_{3}^{2-o}}$ Divide by the volume of the solution : $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{t} 1 / 2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{o}}-\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{\mathrm{o}}$	0.75
2.4.	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{t} 1 / 2}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{o}}-\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]_{\mathrm{o}}=1-0.4=0.6 \mathrm{~mol} . \mathrm{L}^{-1}$	0.25
2.5 .	The graph c corresponds to the shape of the curve representing the variation of the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions with respect to time, because : At $\mathrm{t}=0$ we have $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{o}}=1 \mathrm{~mol} . \mathrm{L}^{-1}$ At $\mathrm{t}_{1 / 2}=52 \mathrm{~s}$ we have $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]_{\mathrm{t} 1 / 2}=0.6 \mathrm{~mol} . \mathrm{L}^{-1}$ At $t=300$ s it does not reach the X - axis ..	1
3.	The initial concentration of reactants and the temperature are two kinetic factors $\Delta \mathrm{t}_{2}>\Delta \mathrm{t}_{1}$. By comparing the 2 experiments 1 and 2 , we found that the initial concentration of reactants is the same in the 2 experiments but the temperature is higher in experiment 1 than that in experiment 2 . The rate of the reaction in experiment 1 is higher than that in experiment 2. $\Delta t_{3}>\Delta t_{1}$. The temperature is the same in the two experiments but the concentration	1.5

	of reactant $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ is less than that in experiment 3.The rate of the reaction in experiment 1 is higher than that in experiment 3.	

Exercice 3 (7 points) Acid-Base Reactions		
Part of the \mathbf{Q}.	Answers	Mark
1.1.	In the beaker 1 , hydrochloric acid is a strong acid : $\mathrm{pH}_{1}=-\log \mathrm{C} ; \quad 1.3=-\log \mathrm{C} ; \quad \mathrm{C}=10^{-1,3}=5.0 .10^{-2} \mathrm{~mol}^{2} . \mathrm{L}^{-1}$	0.5
1.2.	Ammonia NH_{3} and benzoate ion $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$are two weak bases . Since the two bases have the same concentration C . The base which has the higher pH is the stronger base. Since $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} / \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right)=4.2<\mathrm{pKa}\left(\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}\right)=9.2$. then NH_{3} is a stonger base than $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$. Therefore pH of $\mathrm{NH}_{3}>\mathrm{pH}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$. Beaker 2 contains solution of NH_{3} Beaker 3 contains benzoate ion $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$.	1
1.3.	Upon dilution the number of mole of the solute is conserved : $\mathrm{n}_{\mathrm{o}}=\mathrm{n} ; \mathrm{C}_{\mathrm{o}} \times \mathrm{V}_{\mathrm{o}}=\mathrm{C} \times \mathrm{V} ; 10 \mathrm{Vo}=5 \times 10^{-2} \mathrm{~V} ; \mathrm{V}=200 \mathrm{~V}_{\mathrm{o}}$ For a volumetric flask of volume $\mathrm{V}=500 \mathrm{~mL} ; \mathrm{Vo}=2,5 \mathrm{~mL}$ The appropriate set is b:graduated pipet 5 mL and volumetric flask 500 mL .	1
2.1.	$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$	0.5
2.2.	$K_{R}=\frac{\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1}{K_{a}}=\frac{1}{10^{-p K a}}=\frac{1}{10^{-9,2}}=10^{9,2}=1,58.10^{9}>10^{4}$ Therefore the reaction is complete	0.75
2.3.	At equivalence : $\mathrm{n}_{\mathrm{H}_{3} \mathrm{O}}{ }^{+}$(added) $=\mathrm{n}_{\mathrm{NH} 3 \text { present in beaker }} ; \mathrm{C} \times \mathrm{V}_{\mathrm{E}}=\mathrm{C} \times \mathrm{V}_{\mathrm{b}} ; \mathrm{V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{b}}=20 \mathrm{~mL}$.	1
2.4.	$\mathrm{V}=30 \mathrm{~mL}>\mathrm{V}_{\mathrm{E}}=20 \mathrm{~mL}$. The hydrochloric acid becomes in excess in the mixture in the beaker which renders the pH acidic $(\mathrm{pH}<7)$. $\mathrm{pH}_{1}=2$.	0.75
2.5.	The curve $\mathrm{pH}=\mathrm{f}\left(\mathrm{V}_{\mathrm{a}}\right)$ passes through 4 remarkable points initial point: $\mathrm{V}_{\mathrm{a}}=0 \mathrm{~mL} \mathrm{pH}=11$ half-equivalence point : $\mathrm{E}_{1 / 2}: \mathrm{V}_{\mathrm{E}_{12}}=10 \mathrm{~mL} \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=9.2$ equivalence point $\mathrm{E}: \mathrm{V}_{\mathrm{E}}=20 \mathrm{~mL} \mathrm{pH} \mathrm{E}_{\mathrm{E}}=5.4$ Point after equivalence : $\mathrm{V}=30 \mathrm{~mL} \mathrm{pH}=2$	1.5

Page $\mathbf{3}$ de 3

