دورة الـعام Y Y Y الـعاديّة الجمعة 9 حزيران Y.IV		امتحانات الثّهاداة المتوسنّة	وزارة التُربيةّ و التَّعليم العالي المديريّة العامّة للتّربية دائرة الامتحاتات الرّسميّة
	الرّقق:	مسابقة في مادّة الفيزياء المدّة: ساعة واحدة	

This exam is formed of four obligatory exercises in two pages Non programmable calculators are allowed

Exercise 1 (4 pts) Wall outlet (Socket)

Document 1 represents a wall outlet of the mains for which the effective voltage is 220 V .

Indicate, for each of the following statements, if it is true or false. Correct the false statements.

1. To distinguish between the live and the neutral terminals, we use a tester.
2. A voltmeter, adjusted on AC mode and connected across the ground and the neutral terminals, displays 220 V .
3. The voltage delivered by the wall outlet is alternating triangular.

Document 1
4. The maximum value of the voltage of the mains is : $U_{m}=\frac{220}{\sqrt{2}} \mathrm{~V}$.

Exercise 2 (5 pts) Normal functioning of a lamp

Consider a lamp (L) carrying the inscriptions ($9 \mathrm{~V} ; 0.3 \mathrm{~A}$) and a dry cell of constant voltage U_{PN} (L) acts as a resistor (ohmic conductor) of resistance R_{L}.
In order to function normally, the lamp (L) is connected in series with a resistor (R) of resistance R (Document 2).

1. What does each of the inscriptions carried by (L) represent?
2. Determine R_{L}.
3. Show that the current passing through (R) is $\mathrm{I}=0.3 \mathrm{~A}$.
4. Using the law of addition of voltages, calculate the voltage U_{BC} across (R) knowing that $\mathrm{U}_{\mathrm{PN}}=12 \mathrm{~V}$.

Document 2
5. Deduce R.

Exercise 3 (5 pts) Converging lens

The aim of this exercise is to determine the focal length of a converging lens (L).
For this, consider a luminous object (AB) and its image $\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$ given by (L) as shown in document 3 .

Document 3

1. The image ($\mathrm{A}^{\prime} \mathrm{B}^{\prime}$) is virtual. Justify.
2. Reproduce, on a graph paper and with the same scale, the figure of the above document.
3. Let f be the focal length of (L).
3.1. Determine, using the path of a luminous ray issued from B and parallel to the optical axis, the position of the image focus F^{\prime}.
3.2. Deduce f.

Exercise 4 (6 pts) Immersed volume

A wooden cube (C), of side $\mathrm{a}=2 \mathrm{~cm}$, floats on the surface of water.
Given:

- density of wood: $\rho_{\text {wood }}=400 \mathrm{~kg} / \mathrm{m}^{3}$;
- density of water: $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

1. Show that the volume of (C) is $\mathrm{V}=8 \times 10^{-6} \mathrm{~m}^{3}$.
2. Show that the mass of (C) is $\mathrm{m}=3.2 \times 10^{-3} \mathrm{~kg}$.
3. The cube is submitted to two forces: its weight \vec{W} and Archimedes up-thrust force \vec{F}.
3.1. Indicate for each of the two forces if it is a contact force or a

Document 4 force acting from a distance.
3.2. Write the relation between the magnitudes of these two forces.
3.3. Determine the volume V_{i} of the immersed part of the cube.

Exercise 1 (4pts)

wall outlet (Socket)

Part of the Q.	Answer	Mark
$\mathbf{1 .}$	True	$\mathbf{1}$
$\mathbf{2 .}$	False, a voltmeter, adjusted on AC mode, across the ground and neutral terminals indicates approximately 0V OR A voltmeter, adjusted on AC mode and connected across the live and neutral terminals, displays 220 V.	$\mathbf{1}$
$\mathbf{3 .}$	False, the voltage of the mains is alternating sinusoidal.	$\mathbf{1}$
$\mathbf{4 .}$	False, The maximum value of the voltage of the mains is : $U_{\mathrm{m}}=220 \mathrm{x} \sqrt{2} \mathrm{~V}$.	$\mathbf{1}$

Exercise 2 (5pts) normal functioning of the lamp

Part of the Q.	Answer	Mark
$\mathbf{1 .}$	$9 \mathrm{~V}:$ Rated voltage $-0.3 \mathrm{~A}:$ Rated current	$\mathbf{1}$
$\mathbf{2 .}$	$\mathrm{R}_{\mathrm{L}}=\frac{\mathrm{U}}{\mathrm{I}}=\frac{9}{0.3}=30 \Omega$	
$\mathbf{3 .}$	Since (L) functions normally and (R) is connected in series with (L) then $\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{L}}=0.3 \mathrm{~A}$	$\mathbf{1}$
4.	$\mathrm{U}_{\mathrm{PN}}=\mathrm{U}_{\mathrm{AB}}+\mathrm{U}_{\mathrm{BC}}$ $\mathrm{U}_{\mathrm{BC}}=\mathrm{U}_{\mathrm{PN}}-\mathrm{U}_{\mathrm{AB}}=12-9=3 \mathrm{~V}$	$\mathbf{1}$
$\mathbf{5 .}$	$\mathrm{R}=\frac{\mathrm{U}}{\mathrm{I}}=\frac{3}{0.3}=10 \Omega$	$\mathbf{1}$

Exercise 3 (5 pts) converging lens

Part of the Q .	Answer	Mark
1.	Since the direction of the obtained image is erect with respect to the object (AB), the image is virtual.	1
2.	See document	1
4.	Draw from B an incident ray parallel to the optical axis. It emerges as if coming from the image B^{\prime}. The point of intersection between the emergent ray and the optical axis is the image focus $\mathrm{F}^{\prime}+$ Figure	2
6	$\mathrm{f}=\mathrm{OF}^{\prime}=4.5 \times 2=9 \mathrm{~cm}$	1
Exercise 4 (6 pts) Immersed volume		
Part of the \mathbf{Q}.	Answer	Mark
1.	$\mathrm{V}_{\mathrm{C}}=\mathrm{a}^{3}=2^{3}=8 \mathrm{~cm}^{3}$	1
2.	$\mathrm{m}_{\mathrm{C}}=\rho_{\text {wood }} \times \mathrm{V}_{\mathrm{C}}=400 \times 8 \times 10^{-6}=3.2 \times 10^{-3} \mathrm{~kg}$	1
3.1	weight: force acting from a distance . Archimedes up thrust: contact force.	1.5
3.2	the cube floats on the surface of liquid then: $\mathrm{W}=\mathrm{F}$	1
4.2	$\begin{aligned} & \mathrm{W}=\mathrm{F} \Rightarrow \mathrm{mg}=\rho \times \mathrm{V}_{\mathrm{i}} \times \mathrm{g} \\ & \mathrm{~V}_{\mathrm{i}}=\frac{m}{\rho_{\text {water }}}=\frac{3.2 \times 10^{-3}}{1000}=3.2 \times 10^{-6} \mathrm{~m}^{3} \end{aligned}$	1.5

