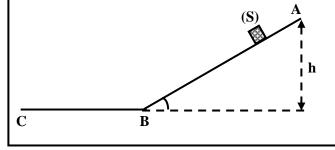
This exam is formed of three exercises in two pages. The use of non-programmable calculator is recommended.

Exercise 1 (7 points)

Mechanical energy

Consider a track ABC situated in a vertical plane as shown in document 1.


The track ABC is formed of two parts:

- > an inclined part AB;
- \triangleright a horizontal part BC of length BC = 2 m.

A solid (S), considered as a particle of mass m = 0.1 kg, is released from rest from point A.

The solid (S) is submitted to a friction force, of constant magnitude f, only along the path BC.

The horizontal plane passing through BC is taken as a reference level for gravitational potential energy.

Doc. 1

Given:

- The height of point A relative to the reference level is: h = 1.5 m;
- $g = 10 \text{ m/s}^2$.
- 1) At point A:
 - **1-1**) Calculate the value of the kinetic energy $KE_{(A)}$ of the solid (S).
 - 1-2) Calculate the value of the gravitational potential energy PEg_(A) of the system [(S) Earth].
 - **1-3**) Deduce the value of the mechanical energy $ME_{(A)}$ of the system [(S) Earth].
- 2) The solid (S) reaches point B with a speed V_B .
 - **2-1**) The mechanical energy of the system [(S) Earth] is conserved between A and B. Why?
 - **2-2**) Deduce the value of the mechanical energy $ME_{(B)}$ of the system [(S) Earth] at point B.
 - **2-3**) Determine the speed V_B .
- 3) The solid (S) continues its motion along BC and reaches point C with a zero speed ($V_C = 0$).
 - **3-1**) Calculate the mechanical energy $ME_{(C)}$ of the system [(S) Earth] at point C.
 - **3-2**) Calculate f knowing that $ME_{(B)} ME_{(C)} = f \times BC$.

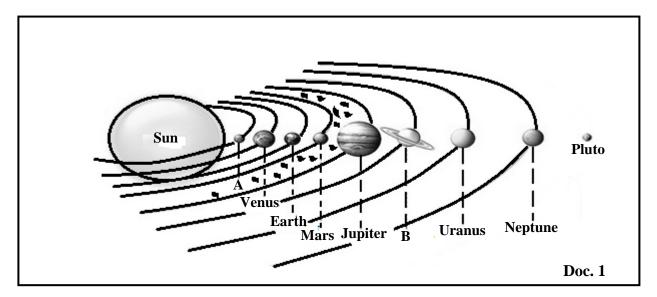
Exercise 2 (6.5 points)

Nuclear fusion

If nuclear fusion were controlled in nuclear reactors, it would open prospects for sustainable economic development in the long term. Nuclear fusion usually concerns the hydrogen isotopes: deuterium 2_1H and tritium 3_1H which may merge to produce a helium nucleus 4_2He and a particle A_ZX . Given:

$$1u = 1.66 \times 10^{-27} kg; \ c = 3 \times 10^8 \, m/s.$$

Nucleus or particle	³ ₁ H	² ₁ H	⁴ ₂ He	^A _Z X	
Mass (in u)	3.0160	2.0134	4.0015	1.0087	


- 1) The nuclei ${}_{1}^{2}$ H and ${}_{1}^{3}$ H are isotopes. Why?
- 2) The fusion of ${}_{1}^{2}H$ and ${}_{1}^{3}H$ needs a very high temperature. Give an approximate value of this temperature.

- 3) The equation of the fusion reaction between deuterium and tritium is: ${}^2_1H + {}^3_1H \rightarrow {}^4_2He + {}^A_2X$.
 - **3-1**) Calculate Z and A, indicating the laws used.
 - **3-2)** Name the emitted particle.
 - **3-3**) Show that the mass defect of this reaction is: $\Delta m = 0.0192$ u.
 - **3-4)** Calculate the energy E liberated by this reaction.
 - **3-5**) This energy E is liberated by the fusion of one nucleus of deuterium and one nucleus of tritium of total mass of 8.35×10^{-24} g. Show that the energy liberated by the fusion of 1 g of a mixture containing equal numbers of deuterium and tritium nuclei is $E_1 = 3.4353 \times 10^{11}$ J.
- 4) The energy liberated by the fission of 1 g of uranium-235 is $E_2 = 8.2 \times 10^{10}$ J. Deduce an advantage of nuclear fusion over nuclear fission.
- 5) Give another advantage of nuclear fusion over nuclear fission.

Exercise 3 (6.5 points)

The solar system

Document 1 represents a simplified figure of our solar system.

- 1) The planet "A" is the closest planet to the Sun.
 - **1-1**) Name this planet.
 - **1-2)** Indicate the group of planets to which this planet belongs.
 - **1-3**) Indicate two common properties among the planets of this group.
- 2) The planets "B" and "Neptune" belong to the same group of planets.
 - **2-1**) Name the planet "B".
 - **2-2)** Indicate the group of planets to which these two planets belong.
- 3) The period of revolution of planet "A" around the Sun is T_A and that of planet "B" is T_B . Compare T_A and T_B . Justify by stating the convenient law.
- 4) A belt of solid objects exists between the orbits of Mars and Jupiter. Name these objects.
- 5) Document 1 shows that most of the planets orbit the Sun in almost the same plane. Name this plane.
- 6) Document 1 shows that the trajectories of the planets around the Sun are not circular.
 - **6-1)** Indicate the shape of the trajectories described by the planets.
 - **6-2)** Name the scientist who set out the law related to the shape of these trajectories.

امتحانات الشَّهادة التَّانويّة العامّة فرعا الاجتماع والاقتصاد والآداب والإنسانيات أسس التصحيح ـ فيزياء

Exercise 1 (7 points) Mechanical energy

Question		Answer	
	1-1	$KE(A) = \frac{1}{2} m V_A^2 = \frac{1}{2} \times 0.1 \times 0 = 0 J$	0.5
1	1-2	$PEg_{(A)} = m g h$	0.5
1		$PEg_{(A)} = 0.1 \times 10 \times 1.5 = 1.5 J$	0.5
	1-3	$ME_{(A)} = PEg_{(A)} + KE_{(A)}$	0.5
		$ME_{(A)} = 1.5 + 0 = 1.5 J$	0.5
	2-1	The mechanical energy is conserved between A and B since there is no friction.	0.5
	2-2	$ME_{(B)} = ME_{(A)} = 1.5 J$	0.5
2	2-3	$ME_{(B)} = PEg_{(B)} + KE_{(B)}$	0.5
		$PEg_{(B)} = 0$ J since B is at the reference level of gravitational potential energy.	
		$ME_{(B)} = 0 + \frac{1}{2} \text{ m } V_B^2$, so $V_B = \sqrt{\frac{2ME_{(B)}}{m}}$, then $V_B = \sqrt{\frac{2 \times 1.5}{0.1}} = 5.5 \text{ m/s}$	0.5 0.5
	3-1	$ME_{(C)} = PEg_{(C)} + KE_{(C)}$	
		$PEg_{(C)} = 0 J$; since C is at the reference level of gravitational potential energy	
3		and $KE_{(C)} = 0$ J since $V_C = 0$.	0.5
		$ME_{(C)} = 0 + 0 = 0 J$	0.5
	3-2	$ME_{(B)} - ME_{(C)} = f \times BC$, so $f = \frac{ME_{(B)} - ME_{(C)}}{BC}$, then $f = \frac{1.5 - 0}{2} = 0.75 \text{ N}$	1

Exercise 2 (6.5 points)

Nuclear Fusion

Question		Answer	
1		These nuclei have same charge number but different mass number.	
2		100 million degrees	0.5
	3.1	Conservation of mass number: $2+3=4+A$, then $A=1$ Conservation of the charge number: $1+1=2+Z$, then $Z=0$ (or student can say Soddy's laws)	1
	3.2	Neutron	0.5
3	3.3	$\Delta m = \Delta m = m_{before} - m_{after}$ $\Delta m = m({}_{1}^{2}H) + m({}_{1}^{3}H) - m({}_{2}^{4}He) - m({}_{0}^{1}n)$ $\Delta m = (2.0134 + 3.0160) - (4.0015 + 1.0087) = 0.0192 \text{ u}$	0.75
	3.4	E = Δ m c ² But Δ m = 0.0192 × 1.66 × 10 ⁻²⁷ kg = 3.1872 × 10 ⁻²⁹ kg E = 3.1872 × 10 ⁻²⁹ × 9×10 ¹⁶ = 2.86848 × 10 ⁻¹² J	1
	3.5	$8.35 \times 10^{-24} \text{g} \rightarrow 2.86848 \times 10^{-12} \text{J}$ $1 \text{g} \rightarrow E_1$ Therefore $E_1 = 3.4353 \times 10^{11} \text{J}$	0.75
	$\mathbf{E}_1 > \mathbf{E}_2$, then nuclear fusion yields more energy than nuclear fission		0.5
		Hydrogen is more abundant than uranium in nature Or: Nuclear fusion does not produce radioactive nuclei	0.5

Exercise 3 (6.5 points)

Solar System

Part		Answer	Mark
	1-1	A: Mercury	0.5
1	1-2	Group of the inner planet	0.5
	1-3	They are solid planets They have similar dimensions (volume) They have similar mass They have almost same density (similar composition)	0.5 0.5
2	2-1	B :Saturn	0.5
	2-2	Group of the outer planets	0.5
Kepl		$T_A < T_B$, since planet A is closer to the Sun than planet B. Kepler's third law: The period of revolution of a planet increases with the distance separating it from the Sun.	0.5 1
4 Asteroids		Asteroids	0.5
5		The plane of the ecliptic	0.5
	6-1	The form is elliptical	0.5
6	6-2	Kepler	0.5