دورة المعام ٢٠١٧ العاديّة الخميس ١٥ حزيران ٢٠١٧

	.			
• • · · · · · · · · · · · · · · · · · ·	سابقة فيمادة البياضيات	•		an Itan lite In
· @	سبعه في ماده الرياطيات	~		
× 11	a 1 m - 1 m - 1			-
الركم:	المده: ساعتان			
			14 KT KI .	* • • • •

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات.

يستطيع المرشّح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I - (4 points)

A store sells LCDs and laptops only.

A survey conducted on customers who visit this store revealed that:

- 20% of these customers buy an LCD
- 60 % of the customers who buy an LCD, buy also a laptop
- 20% of the customers who don't buy an LCD buy a laptop.

A customer may buy one laptop, one LCD, both or none.

Part A

A customer is randomly selected from the surveyed customers and interviewed. Consider the following events:

- D : "the customer bought an LCD"
- L : " the customer bought a laptop "

1) a- Calculate the probability $P(D \cap L)$.

b- Show that the probability that the customer bought a laptop is 0.28.

2) The customer did not buy a laptop, calculate the probability that this customer bought an LCD.

Part B

The profit of the store from selling an LCD is 150 000 LL and from selling a laptop is 250 000 LL.

Let X be the random variable equal to the profit of the store from each customer.

- 1) Determine the 4 possible values of X.
- 2) Calculate the probability P(X = 0).
- 3) Determine the probability distribution of X.
- 4) Estimate the average profit obtained by this store for a number of customers equal to 200.

II- (4 points)

A factory produces a certain liquid detergent. The daily production is 200 liters which are poured every morning in a storage container of capacity 520 liters. During the day, 40% of the quantity stored in the container is sold.

Denote by U_n the quantity of detergent stored in the container in the morning of the nth day just after the daily production is added to the container. Thus $U_1 = 200$. We admit that $U_{n+1} = 0.6U_n + 200$.

- 1) Calculate U₃.
- 2) For all $n \ge 1$, consider the sequence (V_n) defined as $V_n = 500 U_n$.

a – Show that (V_n) is a geometric sequence. Calculate its first term V₁ and its common ratio r.

b - Express V_n then U_n in terms of n.

c- Will this factory need a second container to store its production? Justify.

3) Each liter of this detergent is sold for 4 000 LL. Calculate the revenue at the end of the first five days.

III- (4 points)

The following table represents Bashir's monthly salary in each year from 2004 to 2010:

Year	2004	2005	2006	2007	2008	2009	2010
Rank of the year: x _i	1	2	3	4	5	6	7
Monthly Salary: yi (in thousands LL)	1650	1720	1740	1750	1820	1850	1950

Part A

1) Justify that there is a strong positive linear correlation between the two variables x and y.

2) Determine an equation of the regression line $(D_{y/x})$.

3) Assume that the above pattern remains valid till the year 2021.

a- Estimate Bashir's salary in the year 2012.

b- Would Bashir's monthly salary reach 2 200 000 LL before 2015? Justify.

Part B

Bashir intends to borrow a loan of 60 000 000LL from a bank.

This bank proposes to him to pay back this loan in terms of monthly payments for 10 years at an annual interest rate of 8% compounded monthly. The bank accepts to offer Bashir this loan only if the amount of the monthly payment does not exceed one third of his monthly salary.

- 1) Calculate the amount of each monthly payment.
- 2) Based on the model above and the conditions of the bank, in which year can Bashir get this loan? Justify.

IV- (8 points)

Part A

Consider the function defined over $[0; +\infty[$ as $f(x) = 4xe^{-x+1}$ and let (C) be its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.

- 1) Determine $\lim_{x \to \infty} f(x)$. Deduce an asymptote to (C).
- 2) Verify that $f'(x) = 4(1-x)e^{-x+1}$ and set up the table of variations of f.
- 3) Calculate f(2), f(3) and draw (C).
- 4) The line (D) with equation y = 2.5 intersects (C) in two points with abscissas α and β . We admit that $0.31 < \alpha < 0.33$, verify that $2.30 < \beta < 2.32$.

In what follows, let $\alpha = 0.32$ and $\beta = 2.31$.

Part B

A factory produces toys. The demand, expressed in thousands of toys, is modeled as

 $D(x) = 4e^{-x+1}$ where x is the unit price of one toy in thousands of LL.

- 1) Verify that f(x) represents the revenue obtained from selling the demanded quantity and that it is expressed in millions LL. $(0.2 \le x \le 6)$
- 2) a- Find the unit price of a toy so that the revenue is maximal. Determine, in millions LL, this maximal revenue.
 - b- Calculate E(x), the elasticity of the demand with respect to the price.
 - c- Determine the value of this elasticity when the revenue is maximal. Interpret.
- 3) a- If the revenue exceeds 2 500 000 LL, in which interval will the unit price of a toy vary?
 - b- Deduce the interval in which the demanded quantity of toys will vary.

دورة المعام ٢٠١٧ العاديّة	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
الخميس ١٥ حزيران ٢٠١٧	فرع: الاجتماع والاقتصاد	المديرية العامة للتربية دائرة الامتحانات الرسمية
	مسابقة في مادة الرياضيات	مشروع معيار التصحيح

.ة الرياضيات	ہ فی ماد	سابقة
--------------	----------	-------

مشروع معيار التصحيح

QI	Short Answers					Μ
A1a	$p(D \cap L) = P(L/D) \times P(D) = \frac{12}{100} = 0.12$				1	
A1b	$p(L) = p(L \cap D) + p(L \cap \overline{D}) = (0.2)(0.6) + (0.8)(0.2) = 0.28$					1
A 2	2 $P(\overline{D}/L) = \frac{P(\overline{D} \cap L)}{P(L)} = \frac{0.8 \times 0.2}{0.28} = 0.571$					1
B1	$X \in \{0; 150000; 250000; 400000\}$					0.5
B2	$p(X=0) = p(\overline{D} \cap \overline{L}) = 0.64$				1	
	$p(X=250000) = p(\overline{D} \cap L) = 0.2 \times 0.8 = 0.16$					
	$p(X=150000) = p(D \cap \overline{L}) = 0.2 \times 0.4 = 0.08$					
B3	$p (X=400000) = p (D \cap L) = 0.12$					1.5
	$X = x_i$	0	150000	250000	400000	
	$P_i = p(X = x_i)$	0.64	0.08	0.16	0.12	
						1
B4	E(X) = 0 + 12000 + 40000 + 48000 = 100000 L.L.; 200 × E(X) = 20000 000 LL.					1
	So the average profit achieved in the store is 20 000 000 LL.					

QII	Short Answers	Μ
1	$U_2 = 0.6U_1 + 200 = 120 + 200 = 320$ $U_3 = 0.6 U_2 + 200 = 192 + 200 = 392$	1
2a	$V_{n+1} = 500 - U_{n+1} = 500 - 0.6 U_n - 200 = -0, 6U_n + 300 = -0.6(500 - U_n) + 300 = 0, 6V_n.$ Therefore (V _n) is a geometric sequence with common ratio r = 0.6 and first term V ₁ = 300.	2
2b	$V_n = V_1 \cdot q^{n-1} = 300 \times (0.6)^{n-1}$. $U_n = 500 - 300 \times (0.6)^{n-1}$.	1
2c	No since $U_n - 500 = -300 \times 0.6^{n-1} < 0$	1.5
3	$U_{1} = 200; U_{2} = 320; U_{3} = 392; U_{4} = 435.2; U_{5} = 461.12$ $U_{1} + U_{2} + U_{3} + U_{4} + U_{5} = 1808.32$ $R = 4000 \times 0.4 \times 1808.32 = 2,893,312 \text{ LL}.$	1.5

QIII	Short Answers	Μ
A1	$r = 0.97 \approx 1$	1
A2	$D_{y/x}$: y = 44,285x +1605.71.	1
A3a	For $x = 9$; $y = 2,0042,65$ LL	1
A3b	x =12 ; y =2137128 LL < 2200000 LL Then it won't reach 2,200,000 LL in 2015	1
B1	$V = R \frac{1 - (1 + i)^{-n}}{i} ; 60 \ 000 \ 000 = R \frac{1 - \left(1 + \frac{8}{100 \times 12}\right)^{-120}}{\frac{8}{100 \times 12}} ;$	1.5
B2	$\begin{array}{c} 60 \ 000 \ 000 = R \times \hline 0.0066666 \\ \hline 727237,46 \times 3 = 2181712,38 \ LL \\ 2181,71238 = 44.285x + 1605.71 \implies x = 13.006 > 13 \ Thus \ x = 14 \ that \ is \ in \ 2017. \end{array}$	1.5

QIV	Short Answers	Ν
A1	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4x e^{-x+1} = \lim_{x \to +\infty} \frac{4x}{e^{x-1}} = \lim_{x \to +\infty} \frac{4}{e^{x-1}} = 0 \text{(L'HR)}$ The axis of abscissas is an asymptote to (C).	1
A2	$f(x) = 4xe^{-x+1} ; f'(x) = 4e^{-x+1} - 4xe^{-x+1}$ $f'(x) = 4(1-x)e^{-x+1}$ $\frac{x \mid 0 1 +\infty}{f'(x) \mid + 0 -}$ $f(x) \mid 0 - -$	2
A3	$f(2) = 8e^{-1} \approx 2,94$ $f(3) = 12e^{-2} \approx 1,6$	2.5
A4	$(f(2,3)-2,5) \times (f(2,32)-2,5) = 0,07 \times (-0,03) < 0$	1
B1	The revenue is $(x)(1000) \times (d(x))(1000) = f(x)$ in millions.	1
B2a	The revenue is maximum for a price of 1000 LL and it is equal to 4 000 000 LL	1.5
B2b	$d(x) = 4e^{-x+1}$ so $d'(x) = -4e^{-x+1}$ then $E(x) = -x\frac{d'(x)}{d(x)} = x$	1
B2c	For x=1 the revenue is maximum ; Unit Elasticity	1.5
B3a	Between 321 LL and 2309 LL	1.5
B3b	d'(x) < 0; 0.32 <x<2.31; <math="" and="" d="" decreasing="" is="" therefore="">d(2.31) < d(x) < d(0.32). Thus the demand is between 1080 and 14973 toys.</x<2.31;>	1