	مسابقة في مـادة الفيزباء
الر قٌ	المدة: سـاعةّ واحة

This exam is formed of three exercises in two pages. The use of a non-programmable calculator is recommended.

First exercise (6 pts) Converging or Diverging lens?

In the figures shown below, $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{~L}_{4}, \mathrm{~L}_{5}$, and L_{6} represent lenses. Specify, with justification, in each case, whether the lens is converging or diverging.

Our purpose is to study, using an oscilloscope, some characteristics of a voltage (u) delivered by a low frequency generator G.

1) Figure (1) represents the wave form of the voltage (u). The oscilloscope is adjusted as follows: horizontal sensitivity (time base): $\mathrm{V}_{\mathrm{b}}=5 \mathrm{~ms} / \mathrm{div}$; vertical sensitivity: $S_{V}=10 \mathrm{~V} / \mathrm{div}$.
a) Indicate the type of the voltage (u).
b) Calculate the period and the frequency of (u).
c) Calculate the maximum value of (u). Deduce its effective value.

Figure (1)
2) The generator G still delivers the same voltage (u). We modify one of the two sensitivities of the oscilloscope. The wave form of figure (2) is then obtained.
a) Indicate, with justification, which of the two sensitivities V_{b} or S_{V} has been modified.
b) Calculate the new value of this sensitivity.
3) We turn off the sweeping. What will be the shape of the displayed voltage (u)?

Third exercise: ($7^{1 / 2} \mathbf{p t s}$)

Hollow sphere

The aim of this exercise is to determine experimentally the volume of the cavity of an iron sphere (S).
Given $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.

1) First experiment

We attach (S) to a dynamometer (spring balance). The dynamometer indicates 7.8 N at equilibrium.
a) Name the two forces acting on (S).
b) Give the relation between the values of these forces. Deduce the mass of (S).
c) Calculate the volume V_{1} of iron. Given: The density of iron $=7800 \mathrm{~kg} / \mathrm{m}^{3}$.

2) Second experiment

The sphere (S), still attached to the same dynamometer, is completely immersed in water.
The dynamometer indicates 6.3 N .
a) What is the value of the apparent weight of (S)? Deduce the value F of Archimedes up-thrust exerted by water on (S).
b) Determine the volume V_{2} of the sphere (S). Given: The density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

3) Volume of the cavity

a) By comparing V_{1} and V_{2}, verify that the sphere (S) is hollow.
b) Calculate the volume V of the cavity.

First exercise : (6 pts)

1) L_{1} is a diverging lens because it has thick edges or because it is biconcave. ($\mathbf{1} \mathbf{~ p t)}$
2) L_{2} is a converging lens because the emergent ray approaches the optical axis or the emergent ray converges towards the optical axis. (1 pt)
3) L_{3} is a diverging lens because the incident cylindrical beam emerges from the lens as a diverging beam. (1 pt)
4) L_{4} is a diverging lens because the image focus is before L_{4} or because it is on the side of the incident light. ($\mathbf{1} \mathbf{~ p t)}$
5) L_{5} is a converging lens because the image is real being located on the screen. (1 pt)
6) L_{6} is a converging lens because the image is bigger than the object or because it is farther from the lens than the object. (1 pt)

Second exercise : ($61 / 2 \mathrm{pt}$)

1) a) Sinusoïdal $\left(\frac{1}{2} \mathbf{p t}\right)$
b) $\mathrm{T}=\mathrm{V}_{\mathrm{b}} \times x\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)$

$$
\Rightarrow \mathrm{T}=5 \times 8=40 \mathrm{~ms}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p} \mathbf{t}\right)
$$

$$
\mathrm{f}=\frac{1}{\mathrm{~T}} \quad\left(\frac{1}{2} \mathrm{pt}\right)
$$

$$
\Rightarrow \mathrm{f}=\frac{1}{40 \times 10^{-3}}=25 \mathrm{~Hz}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
$$

c) $\mathrm{U}_{\mathrm{m}}=\mathrm{S}_{\mathrm{V}} \times \mathrm{y} \quad\left(\frac{1}{2} \mathbf{p t}\right)$

$$
\Rightarrow \mathrm{U}_{\mathrm{m}}=3 \times 10=30 \mathrm{~V} \quad\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
$$

$$
\mathrm{U}_{\mathrm{eff}}=\frac{\mathrm{U}_{\mathrm{m}}}{\sqrt{2}} \quad\left(\frac{1}{2} \mathbf{p t}\right)
$$

$$
\Rightarrow \mathrm{U}_{\mathrm{eff}}=\frac{30}{1.4}=21 \mathrm{~V} \quad\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p} \mathbf{t}\right)
$$

2) a) V_{b} has been modified because the number of divisions corresponding to the period has changed. Or because the number of divisions corresponding to U_{m} remained the same. ($\frac{\mathbf{3}}{\mathbf{4}} \mathbf{p t}$)
b) $\mathrm{T}=\mathrm{V}_{\mathrm{b}}^{\prime} \times x^{\prime}$
$\Rightarrow \mathrm{V}_{\mathrm{b}}^{\prime}=\frac{40}{4}=10 \mathrm{~ms} / \operatorname{div}\left(\frac{3}{4} \mathbf{p t}\right)$
3) Vertical line ($\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}$)

Third exercise: ($7^{1 / 2} \mathbf{~ p t s)}$

1) a) \vec{W} : Weight of (S) ($\left.\frac{1}{2} \mathbf{p t}\right)$
$\overrightarrow{\mathrm{T}}$: Tension of the spring ($\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}$)
b) $\mathrm{W}=\mathrm{T}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)$

$$
\text { Thus } \mathrm{P}=7.8 \mathrm{~N}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
$$

$$
\mathrm{W}=\mathrm{Mg}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
$$

$$
\Rightarrow \mathrm{M}=\frac{7.8}{10}=0.78 \mathrm{~kg} \quad\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
$$

$$
\text { c) } \rho=\frac{M}{V_{1}}\left(\frac{1}{2} \mathbf{p t}\right)
$$

$$
\Rightarrow \mathrm{V}_{1}=\frac{0.78}{7800}=10^{-4} \mathrm{~m}^{3}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
$$

2) a) $\mathrm{P}_{\mathrm{a}}=6.3 \mathrm{~N}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)$

$$
\begin{aligned}
& F=P_{r}-P_{a}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right) \\
& F=7.8-6.3=1.5 \mathrm{~N}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)
\end{aligned}
$$

b) $\mathrm{F}=\rho_{\mathrm{L}} \mathrm{V}_{2} \mathrm{~g}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)$
$\Rightarrow \mathrm{V}_{2}=\frac{1.5}{1000 \times 10}=1.5 \times 10^{-4} \mathrm{~m}^{3}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)$
3) a) $V_{1}<V_{2}$

Therefore the sphere is hollow ($\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}$)
b) $\mathrm{V}=\mathrm{V}_{2}-\mathrm{V}_{1}=0.5 \times 10^{-4} \mathrm{~m}^{3}\left(\frac{\mathbf{1}}{\mathbf{2}} \mathbf{p t}\right)$

