	الهيئة الأكاديميّة المشتركة قسم : الرياضيات	

```
نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الاراسي Y Y Y Y Y Y Y 17 وحتى صدور المناهج المطوّرة)
                                    ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.
يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).
```


I- (2 points)

In the complex plane referred to the orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{u}} ; \vec{v}$) (C) is the circle with the center $\mathrm{I}(2 ; 2)$ and radius 2 ; In the next figure :

- (D) and (D') are two lines with respective equations : $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=-\mathrm{x}+4$;
- (D) intersects (C) at A and B;
- (D') intersects (C) at E and F.

Answer to each question by true or false and jutify :

1) The affix of B is: $\mathrm{Z}_{\mathrm{B}}=(\sqrt{2}+2) e^{i\left(\frac{\pi}{4}\right)}$
2) The affixes of the points I, F and B verify the relation: $Z_{B}=i\left(Z_{F}-2-2 i\right)$.
3) Let S be the direct plane similitude that maps A onto B and I onto F, then the measure of the angle of SoS is $\frac{\pi}{4}$.
4) The set of the points M with affix z verifying the two conditions: $|z-1|=|z-i|$ and $|z-2-2 i|=2$ is the segment $[\mathrm{AB}]$.

II- (3 points)

In the space referred to the system $(O ; \vec{i}, \vec{j} ; \vec{k})$. Consider the points $\mathrm{A}(2 ; 1 ; 0) ; \mathrm{B}(0 ; 1 ; 3)$,
the line (d) : $\left\{\begin{array}{l}x=4 t \\ y=2 \\ z=-3 t+3\end{array} \quad(t \in I R)\right.$ and the plane (P) with equation : $3 \mathrm{x}-4 \mathrm{z}=0$

1) a- Show that (AB) and (d) are skew.
b- Show that an equation of the plane (Q) containing (d) and parallel to (AB) is $y-2=0$.
c- Calculate the distance from A to (Q).
2) a- Show that (P) and (Q) are perpendicular and give the parametric equations of (Δ).The intersection line of (P) and (Q).
b. Let $S\left(1 ; 2 ; \frac{-3}{2}\right)$ be a point in the space. Show that S is equidistant from (P) and (d).

III- (2 points)

An urn contains 4 black balls, 3 white balls and n red balls . ($n>1$)

Part A:

In this part , suppose that $\mathrm{n}=2$. We select randomly and simultaneously 3 balls from the urn.

1) Calculate the probability to select three balls having same color.
2) Let E be the event: "Amoung the three balls selected, we obtain exactly two balls with same color. Show that $\mathrm{P}(\mathrm{E})$ is equal to $\frac{55}{84}$.

Partie B:

We select randomly and simultaneously two balls from the ($\mathrm{n}+7$) balls.
Denote by X the random variable that is equal to the number of red balls obtained.
Show that $\mathrm{P}(\mathrm{X}=2)=\frac{n(n-1)}{(n+6)(n+7)}$.

1) Determine the probability distribution of X.
2) Knowing that $X=0$, prove that the probability to select two balls of different color is independent of n.
3) Calculate n so that the mathematic expected value $\mathrm{E}(\mathrm{x})$ is equal to 1 .

IV-(3 points)

In the next figure, (AE) and (BL) are two perpendicular lines so that:
$\mathrm{AB}=\mathrm{AC}=1, \mathrm{AE}=\mathrm{AD}=\mathrm{DF}=\mathrm{FL}=2$.
Let S be the direct similitude of the plane that maps A onto D and C onto F.

1) Determine the ratio and the angle of S.
2)

a- G is a point so that $\overrightarrow{D G}=\overrightarrow{A E}$, prove that $S(B)=G$.
b- Find $S(E)$.
3) Let H and K the respective midpoints of [BE] and [GL].The lines (AH) and (DK) intersect at I . The lines (AH) and (DG) intersect at O .
a- Prove that $S(H)=K$ and $S(D)=O$.
b- Deduce that I is the center of S.
4) R is a rotation with center B and angle $\frac{\pi}{2}$. J is the point of intersection of (BG) and (AE). a-What is the nature of SoR ?
b- Prove that J is the center of SoR.
5) The complex plane is referred to the orthonormal sytem $(A ; \overrightarrow{A B}, \overrightarrow{A C})$.
a- Give the complex form of S and deduce the affix of I.
b- Determine the affix of O then compare $\overrightarrow{I O}$ and $\overrightarrow{I A}$.
c - M is a variable point so that $Z_{M}=x+2(1-x)$ i and $M^{\prime}=S(M)$.
Determine Z_{M}, and deduce that M^{\prime} moves on a line to determine its equation .

V-(3 points)

Consider a right angled triangle OBF at O with $\mathrm{OF}=3$ and $\mathrm{OB}=4$.

M is a variable point so that $\|\overrightarrow{M O} \wedge \overrightarrow{M B}\|=2 M F$.

Part A

1) Prove that M moves on a Hyperbol (H) with focus F , directrice (OB) and eccentricity $e=2$ Determine the focal axis of (H).
2) A is a point so that $\overrightarrow{O A}=\frac{1}{3} \overrightarrow{O F}$ and A^{\prime} ' is the symmetric of F with respect to O .
a- Prove that A and A' are the vertices of (H).
b- Deduce the center I of (H) and the second focus F'.
3) The circle with center I and radius 2 intersects (OB) at G and G' Prove that (IG) and (IG’) are asymptotes to (H).
4) C is a point defined as $\overrightarrow{F C}=\frac{3}{2} \overrightarrow{O B}$.
a- Prove that C is a point on (H).
b- Calculate CF'-CF and deduce CF'.
c-Prove that (OC) is a bissector of $F \hat{C} F$ '.
d-Plot (H).

Part B

Consider the orthonormal system (I, \vec{i}, \vec{j}) with $\vec{i}=\frac{1}{3} \overrightarrow{O F}$ and $\vec{j}=\frac{1}{4} \overrightarrow{O B}$.

1) Write an equation of (H).
2) Write the equations of the asymptotes to (H).
3) (P) is a parbola with vertex $V(0,2)$ and focus $R(0,3)$.
a- Write an equation of (P).
b- Show that (P) is tangent to (H) at $\mathrm{L}(4: 6)$ and another point to be determined.

VI- (7 points):

Let f be the function defined over IR as $\mathrm{f}(\mathrm{x})=\mathrm{x}-\ln \left(\mathrm{x}^{2}+1\right)$ and (C) its representative curve in the orthonormal sytem $(0 ; \vec{i} ; \vec{j})$.

Part A

1) Calculate $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow+\infty} f(x)$.
2) Show that the curve (C) has a parabolic branch in $+\infty$ and $-\infty$ parallel to the line (d) with equation $y=x$.
a- Show that $f^{\prime}(x)=\frac{(x-1)^{2}}{x^{2}+1}$ and set up the table of variations of f.
b- Verify that (d) is tangent to(C) at O and determine a tangent in $\mathrm{x}=1$.
c-Draw (C) and the line (d).
3) The function f has over IR an inverse function f^{-1} and the point of intersection of $\left(\mathrm{C}_{\mathrm{f}}\right)$ and $\left(C_{f-1}\right)$ is on the first bisector.
a- Solve the inequality $f(x)<x$. Deduce the values of x so that $f^{-1}(x)>x$.
b-Determine the parabolic branch of f^{-1}.
c- Plot the curve of f^{-1} in the same system of that of f.
4) Calculate $\int f(x) d x$. Deduce the area of the domain bounded by the curves of f and f^{-1} and the lines with equations $\mathrm{x}=4$ and $\mathrm{y}=4$.
5) Let g be the function defined over IR as $\mathrm{g}(\mathrm{x})=\frac{4}{1+x^{2}}$, and let $\mathrm{h}=$ fog.
a- Show that h is defined over IR.
b-Calculate $\lim _{x \rightarrow-\infty} h(x)$ and $\lim _{x \rightarrow+\infty} h(x)$. Deduce an equation of an asymptote to the curve of h. c- Calculate h '(1).

part B

Let $\left(\mathrm{u}_{\mathrm{n}}\right)$ the sequence defined as $\left\{\begin{array}{l}\mathrm{u}_{0}=1 \\ \mathrm{u}_{\mathrm{n}+1}=\mathrm{u}_{\mathrm{n}}-\ln \left(\mathrm{u}_{\mathrm{n}}^{2}+1\right)\end{array}\right.$ with $\mathrm{n} \in N$.

1) a-Show that if $x \in[0 ; 1]$ then $f(x) \in[0 ; 1]$.
b-Deduce that for all $\mathrm{n} \in N, \mathrm{u}_{\mathrm{n}} \in[0 ; 1]$.
2) Discuss the variations of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$.
3) a- Show that the sequence $\left(u_{n}\right)$ is convergent. b- Determine the limit of the sequence $\left(U_{n}\right)$.

المادة: الرياضيات الثهادة: الثانوية العامة الفرع: اللعوم العامة نموذج رقم -ז- المدّة : أريع ساعات	الهيئة الأكاديميّة المشتنركة : الريّات	

	Solution	
I-	Question I	4 pts
1)	False. The affix of B is : $\mathrm{Z}_{\mathrm{B}}=(2 \sqrt{2}+2) e^{i\left(\frac{\pi}{4}\right)}$	1
2)	False. The affixes of the points I, F and B satisfy the relation: $\mathrm{Z}_{\mathrm{IB}}=\mathrm{i} \mathrm{Z}_{\mathrm{IF}}$. $\mathrm{Z}_{\mathrm{B}}=\mathrm{i}\left(\mathrm{Z}_{\mathrm{F}}-2-2 \mathrm{i}\right)+2+2 \mathrm{i}$	1
3)	False. A measure of the angle of S o S is $\frac{\pi}{2}$	1
4)	False. The set of th points M with affix z verifing the two conditions: $\|\mathrm{z}-1\|=\|\mathrm{z}-\mathrm{i}\|$ and $\|z-2-2 i\|=2$ is $\{A, B\}$.	1
	Question II	6pts
1-a	$\mathrm{K}(0 ; 2 ; 3)$ is a point on (d) and $\overrightarrow{K A} \cdot\left(\overrightarrow{A B} \wedge \vec{V}_{d}\right) \neq 0$ Then (d) and (AB) are skew.	1
1-b	(d) $\subset(\mathrm{Q})$ since $\mathrm{y}=2 ; \overrightarrow{A B} \perp \overrightarrow{n_{Q}}$ since $\overrightarrow{A B} \cdot \overrightarrow{n_{Q}}=0$. $\mathrm{K}(0 ; 2 ; 3) \in(\mathrm{d}) ; \overrightarrow{K M} \cdot\left(\overrightarrow{V_{d}} \wedge \overrightarrow{A B}\right)=\left\|\begin{array}{ccc} x & y-2 & z-3 \\ 4 & 0 & -3 \\ -2 & 0 & 3 \end{array}\right\|=0 ; \mathrm{y}-2=0 .$	1.5
1-c	$\mathrm{d}(\mathrm{A} ;(\mathrm{Q}))=\frac{\|1-2\|}{\sqrt{1}}=1$	0.5
2-a	$\overrightarrow{\mathrm{N}}_{\mathrm{P}} \perp{\overrightarrow{n_{Q}}}^{\text {because }} \vec{N}_{P} \cdot \vec{n}_{Q}=0$. (P) and (Q) are perpendicular .. $(P) \cap(\mathrm{Q})=(\Delta)$ and $(\mathrm{P}): 3 \mathrm{x}-4 \mathrm{z}=0,(\mathrm{Q}): \mathrm{Y}-2=0$ and $\mathrm{z}=\mathrm{m}$ therefore	1.5

	$\mathrm{x}=\frac{4}{3} m \text { and } \mathrm{y}=2 \text { then }(\Delta):\left\{\begin{array}{c} x=\frac{4}{3} m \\ y=2 \\ z=m \end{array}\right.$					
2-b	$\begin{aligned} & \mathrm{S}\left(1 ; 2 ; \frac{3}{2}\right): \mathrm{K}(0 ; 2 ; 3) \text { then } \quad \overrightarrow{S K} \wedge \vec{V}_{d}=\left\|\begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & \frac{3}{2} \\ 4 & 0 & -3 \end{array}\right\|=3 \vec{j} \\ & \mathrm{~d}(\mathrm{~S} ;(\mathrm{P}))=\frac{\|3-6\|}{\sqrt{25}}=\frac{3}{5} \quad \mathrm{~d}(\mathrm{~S} ;(\mathrm{d}))=\frac{\left\\|\overrightarrow{S K} \wedge \vec{V}_{d}\right\\|}{\left\\|\vec{V}_{d}\right\\|}=\frac{\|3\|}{\sqrt{25}}=\frac{3}{5} \end{aligned}$	1				
	Question III	4pts				
A-1	$\frac{C_{3}^{3}+C_{4}^{3}}{C_{9}^{3}}=\frac{5}{84}$	0.5				
A-2	$\mathrm{P}(\mathrm{E})=\frac{c_{3}^{2} \cdot c_{6}^{1}}{c_{9}^{3}}+\frac{c_{4}^{2} \cdot C_{5}^{1}}{c_{9}^{3}}+\frac{c_{2}^{2} \cdot c_{7}^{1}}{c_{9}^{3}}=\frac{55}{84}$	1				
B-1	$\mathrm{P}(\mathrm{X}=2)=\frac{c_{n}^{2}}{c_{n+7}^{2}}=\frac{n(n-1)}{(n+6)(n+7)}$	0,5				
B-2 B-3	$\mathrm{P}(\mathrm{X}=0)=\frac{c_{7}^{2}}{c_{n+7}^{2}}=\frac{42}{(n+6)(n+7)} \quad \text { et } \mathrm{P}(\mathrm{X}=1)=\frac{c_{n}^{1} c_{7}^{1}}{c_{n+7}^{2}}=\frac{14 n}{(n+6)(n+7)}$ $\mathrm{P}($ two different colors $/ \mathrm{X}=0)=\frac{C_{4}^{1} \times C_{3}^{1}}{C_{7}^{2}}=\frac{4}{7}$.	1				
B-4	$\mathrm{E}(\mathrm{X})=\frac{2 n^{2}+12 n}{(n+6)(n+7)}=1$ then $\mathrm{n}=7$	1				

	Question IV	
1	S is the similitude that maps A onto D and C onto F. Ratio $\frac{D F}{A C}=2$ and $(\overrightarrow{A C}, \overrightarrow{D F})=\frac{\pi}{2}+2 k \pi$	1
2-a	$(\overrightarrow{A B}, \overrightarrow{D G})=\frac{\pi}{2} ; \frac{D G}{A B}=2$ then $\mathrm{S}(\mathrm{B})=\mathrm{G}$.	0.5
2-b	$S(A)=D$ and $S(C)=F$ but C midpoint of $[A E]$ then $S(C)$ is the midpoint of $S([A E])$ then $S(E)=L$	0.5
3-a	H midpoint of [BE] then $\mathrm{S}(\mathrm{H})=\mathrm{K}$ midpoint of [GL]. Since $\mathrm{S}(\mathrm{A})=\mathrm{D}$ then $(\mathrm{AH}) \perp(\mathrm{DK})$ and $(\overrightarrow{A D}, \overrightarrow{D O})=\frac{\pi}{2}+2 k \pi ; \frac{D O}{D A}=\tan D \hat{A} O=\tan A \hat{B} E=2$ then $S(D)=O$	1
3-b	$S(I)=S((A H) \cap(D K))=(D K) \cap(O H)=I$	0.5
4-a	SoR = S ' $(?, 2, \pi)=h(?,-2)$.	0.5
4-b	$B \xrightarrow{R} B \xrightarrow{S} G$ but $\overrightarrow{J G}=-2 \overrightarrow{J B}$ then J center of $S o R$	0.5
5-a	$\mathrm{z}^{\prime}=2 \mathrm{iz}-2 \text { et } Z_{I}=\frac{-2}{5}-\frac{4 i}{5}$	0.5
5-b	$Z_{O}=-2-4 i \Rightarrow \overrightarrow{I O}=-4 \overrightarrow{I A}$	0.5

5-c	$Z_{M^{\prime}}=-6+4 x+2 i x$ and M moves on a line with equation $\mathrm{x}-2 \mathrm{y}+6=0$.	0.5		
	Question V	6pts		
	Part A			
1	$\\|\overrightarrow{M O} \wedge \overrightarrow{M B}\\|=2 A_{\text {МОв }}=M H \times O B$ with $(\mathrm{MH}) \perp(\mathrm{OB})$ $\mathrm{MH} \times 4=2 \mathrm{MF} \Rightarrow \frac{M F}{d(M, O B)}=2$; then M' moves on a hyperbola with focus F , directrix (OB) , $\mathrm{e}=2$ and focal axis (OF).	0.5		
2-a	$\mathrm{AF}=2 \mathrm{AO}, \mathrm{AF}$ ' $=6=2 \mathrm{~A}^{\prime} \mathrm{O}$ but Aand A'are on the focal axis . A and $\mathrm{A}^{\text {' }}$ are the vertices of (H).	0.5		
2-b	I midpoint of [AA '] and F' symmetric of F with respect to I.	0.5		
3	tanOÎG $=\sqrt{3}=$ Slope of the asymptote then (IG) and (IG) are asymptotes to (H).	0.5		
4-a	$\mathrm{FC}=6=2 \mathrm{~d}(\mathrm{C}, \mathrm{OB})$ then C is a point on (H).	0,5		
4-b	$\mathrm{CF}^{\prime}-\mathrm{CF}=\mathrm{AA}^{\prime}=4$ then $\mathrm{CF}{ }^{\prime}=10$	0.5		
4-c	$\tan O \hat{C} F=\frac{1}{2}$ and $\operatorname{tanF} \hat{C} F^{\prime}=\frac{4}{3}$ $\tan (2 O \hat{C} F)=\frac{2 \times \frac{1}{2}}{1-\frac{1}{4}}=\frac{4}{3}$ then $F \hat{C} F^{\prime}=2 O \hat{C} F$, therefore (CO) bisector of $\mathrm{F} \hat{C} F^{\prime}$	0,5		

4-d		

A3

A4a	$\mathrm{f}(\mathrm{x})<\mathrm{x}$ then $\mathrm{x} \in \mathrm{IR} \backslash\{0\}, \mathrm{f}^{-1}(\mathrm{x})>\mathrm{x}$ then $\mathrm{x} \in \mathrm{IR} \backslash\{0\}$.	0.5
A4b	Asymptotic direction parallel to the line $\mathrm{y}=\mathrm{x}$.	0.5
A4c	The curves of f andf f^{-1} are symmetric with respect to the first bissector.	1
A5	$\begin{aligned} & \int \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{\mathrm{x}^{2}}{2}-\mathrm{x} \ln \left(\mathrm{x}^{2}+1\right)+2 \mathrm{x}-2 \arctan \mathrm{x}+\mathrm{c} \\ & \text { Area }=16-2\left[\frac{x^{2}}{2}-x \ln \left(x^{2}+1\right)+2 x-2 \arctan x\right]_{0}^{4}=8 \ln 17+4 \arctan 4-16 \end{aligned}$	1.5
A6a	$x \in D_{g}$, then $x \in R$ and $g(x) \in D_{f}$ therefore $D_{h}=R . \quad x \in D_{g}$	0.5
A6b	$x \rightarrow \pm \infty, g(x) \rightarrow 0$ and $h(x) \rightarrow 0 ; \mathrm{y}=0$ HA	0.5
A6c	f is differentiable at $g(x)$ and $h^{\prime}(x)=f^{\prime}\left(g(x) \times g^{\prime}(x)\right.$ hence $h '(1)=\frac{-2}{5}$.	0.5
B1a	If $\mathrm{x} \in[0 ; 1]$ then $\mathrm{f}(\mathrm{x}) \in[0 ; 1]$	0.5
B1b	Mathematical induction.	1
B2	$\left(U_{n}\right)$ strictly decreasing.	1
B3a	$\left(\mathrm{U}_{\mathrm{n}}\right)$ strictly decreasing and having 0 as`lower bound then U_{n} is convergent.	1
B3b	Limit $=0$.	0.5

