المادة: الرياضيات الشهادة: المتوسطة نموذج رقم -3-المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (3 points)

Answer « True » (T) or « False » (F) and justify your answer.

- 1) $(-2x-2)^2 = 4(x+1)^2$.
- 2) The solutions of the equation $x^2 + 10 = 0$ are $\sqrt{10}$ and $-\sqrt{10}$.
- 3) If x is an acute angle and $\sin x = \frac{1}{3}$, then $\cos x = \frac{2}{3}$.
- 4) The equation $(x + 3)^2 = 0$ has no solution.
- 5) If x is a number greater than 3, then $(x^2 + 1)(2x 5)$ is positive.

II- (2 points)

The questions 1) et 2) are independent. Show all the steps of your work.

1) Given $A = \frac{1}{\sqrt{7}+1} + \frac{1}{\sqrt{7}-1}$ and $B = \frac{7}{3\sqrt{7}}$.

Compare A and B.

- 2) a) Verify that: $\frac{4\sqrt{2}+2}{4+\sqrt{2}} = \sqrt{2}$.
 - **b)** Use the previous equality to prove that $\frac{(\sqrt{32}+2)^2}{(\sqrt{36}-10-\sqrt{2})^2}$ is a natural number.

III- (4 points)

ABCD is a rectangle such that AB = 4 m and AD = 3 m. M is a point on [AD]. The parallel through D to (BM) intersects with [BC] at N. Let AM = x.

Part A

- 1) Prove that:
 - a) x is less than 3.
 - **b)** DMBN is a parallelogram.
 - c) NC = x.
- 2) Prove that the area of the square with side DM is $(3-x)^2$.
- 3) Prove that the area of the parallelogram DMBN is equal to 12 4x.

Part B

- 1) Factorize S'-S.
- 2) Can you find x so that the two areas are equal?
- **3) a)** Solve the equation (x+1)(3-x) = 3.
 - **b)** Give a geometric interpretation to the result.

IV- (2 points)

The sum of two numbers is 47. When we divide one of the numbers by 2 and the other by 3, the sum becomes 17.5.

1) Which one of these 3 systems is related to the given?

$$\begin{cases} x + y = 47 \\ 3x + 2y = 17.5 \end{cases} \begin{cases} y = 47 - x \\ 3x + 2y = 105 \end{cases} \begin{cases} x + y = 47 \\ \frac{x + y}{2} + \frac{y}{3} = 17.5 \end{cases}$$

2) Find the two numbers.

V- (4 points)

In an orthonormal system of axes x'Ox and y'Oy), consider the line (D) with equation y = 2x - 1, and the points B(2;3) and C(3;1).

- 1) Draw the line (D) and plot the points B and C.
- 2) Does the line (D) pass through the points B and C? Justify.
- 3) Let (D') be the line with equation $y = -\frac{1}{2}x + \frac{5}{2}$.
 - a) Prove that (D') passes through C and is perpendicular o (D).
 - **b**) (D') and (D) intersect at S. Determine the coordinates of the point S.
- **4**) Determine the coordinates of the point I, centre of the circle circumscribed about the triangle BSC, and determine the length of its radius.
- 5) Determine the coordinates of point A such that BSCA is a parallelogram. Prove that A is a point on the circle circumscribed about BSC.

VI- (5 points)

In the adjacent figure:

- a semicircle with diameter [AB] and center O;
- AB = 2R;
- E is midpoint of [OB];
- (GE) perpendicular bisector of [OB] (G is a point on the semicircle);
- K is a point onsegment [EG]. The line (BK) and the semicircle intersect at M.

- 1) Draw a figure, to be completed in the remaining parts of the problem.
- 2) a) Prove that the triangle OBG is equilateral.
 - **b)** Calculate GE in terms of R.
 - c) Calculate the angle GMB.
- 3) Prove that the triangles BEK and BMA are similar. Deduce that BK x BM = R^2 .
- 4) The perpendicular through E to (AM) intersects (AM) at N.

Calculate the ratio $\frac{MN}{AM}$

- 5) In this part, suppose that k is the centroid of the triangle GOB.
 - a) Calculate EN and MN in terms of R.
 - **b)** Find R so that the perimeter of the quadrilateral BMNE is equal to $7\sqrt{3} + 3$

المادة: الرياضيات الشهادة: المتوسطة

> نموذج رقم -3-المدّة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

Answer keys

I.	1)	True	
		Expand both expressions or:	0.5
		$(-2x-2)^2 = [-2(x+1)]^2 = 4(x+1)^2$	
		False	0.5
	2)	The equation has no solution : a square can't be negative .	
		False	0.75
	3)	$(\cos x)^2 = 1 - (\sin x)^2 = \frac{8}{9}; \cos x = \frac{2\sqrt{2}}{3}$	
	4)	False	0.5
	4)	only-3 is the solution.	
	5)	True because : $x^2 + 1 > 0$ for all x ; and $2x - 5 > 0$ and $x > 2,5$.	0.75
		The product of two positive numbers is positive.	
	1)	$A = \frac{2\sqrt{7}}{6} = \frac{\sqrt{7}}{3} = \frac{\sqrt{7} \times \sqrt{7}}{3\sqrt{7}} = \frac{7}{3\sqrt{7}}$, hence $A = B$	0.75
II.	2-a	we can show that: $\sqrt{2} \times (4 + \sqrt{2}) = 4\sqrt{2} + 2$	0.5
	2-ь	$\frac{(\sqrt{32}+2)^2}{(\sqrt{36}-10-\sqrt{2})^2} = \frac{(4\sqrt{2}+2)^2}{(6-10-\sqrt{2})^2} = \frac{(4\sqrt{2}+2)^2}{(-4-\sqrt{2})^2} = \frac{(4\sqrt{2}+2)^2}{(4+\sqrt{2})^2} = ($	0.75
	A.1-a	AD = 3 and x is positive, hence x is between 0 and 3.	0.25
ш.	A.1-b	DMBN is a parallelogram since opposite sides are parallel.	0.5
	А.1-с	AD =BC, since ABCD is a rectangle; and DM = NB, since DMBN parallelogram.	0.5
		Therefore AD –DM =BC – NB, and AM = NC = x	
	2)	DM = 3-x, then area of the square = $(3-x)^2$.	0.25
	3)	Different ways:	0.5
		Area (DMBN) = Area (ABCD) – 2 x Area (AMB), because the triangles AMB and DCN are congruent.	
		Area (DMBN) = $12 - 4 x$	
	B-1	$(12-4x)-(3-x)^2-=(3-x)(x+1).$	0.5

	B-2	x=3 or $x=-1$, both are rejected.	0.5
	B-3-a	(x+1)(3-x) = 3, then $x=2$ or $x=0$.	0.5
	B-3-b	The area of parallelogram is 3 more than the area of square.	0.5
IV	1)	$\begin{cases} x + y = 47 \\ \frac{x}{2} + \frac{y}{3} = 17.5 \end{cases} \text{ same as } \begin{cases} y = 47 - x \\ 3x + 2y = 105 \end{cases}$	1
	2)	The two numbers are 11 and 36	1
V	1)	Figure.	0.5 + 0.25
	2)	For $x = 2$, $2x - 1 = 3$; hence B is on (D). For $x = 3$, $2x - 1 = 5$; hence C is not on (D).	0.25 0.25
	3) a	For $x = 3$, $-\frac{1}{2}x + \frac{5}{2} = 1$; hence C is on (D').	0.25
	3) b	$\begin{cases} y = 2x - 1 \\ y = -\frac{1}{2}x + \frac{5}{2} \text{ therefore } 2x - 1 = -\frac{1}{2}x + \frac{5}{2}; \\ x = \frac{7}{5} \text{ et } y = \frac{9}{5} \text{ and } S(\frac{7}{5}; \frac{9}{5}) \end{cases}$	0.25 0.5
	4)	I midpoint of [BC]. Therefore $I(\frac{5}{2}; 2)$ $R = IB = \frac{\sqrt{5}}{2}$	0.25 0.5
	5)	$\overrightarrow{BA} = \overrightarrow{SC}$, therefore : $x - 2 = 3 - \frac{7}{5}$ and $y - 3 = 1 - \frac{9}{5}$ $x = \frac{18}{5}$ and $y = \frac{11}{5}$ BSCA rectangle, so BSC is a right triangleat A; and A is on the circle circumscribed about triangle BSC	0.5
	1)		0.5
VI	2)a-	OG = BG (perpendicular bisector); OG = OB (radii) Therefore OG = BG = OB, and OBG equilateral. 2) b- $GE = \frac{R\sqrt{3}}{2}$. 2) c- $\widehat{GMB} = \frac{\widehat{GOB}}{2} = 30$ degree.	0.75
	3)	BMA and BEK are right triangles and they have a common angle \hat{B} . $\frac{BA}{BK} = \frac{AM}{KE} = \frac{MB}{EB};$ therefore $BK \times BM = BA \times EB = 2R \times \frac{R}{2} = R^2$	0.75 0.5 + 0.5
	4)	$\frac{MN}{AM} = \frac{BE}{BA} = \frac{1}{4}.$	0.75
	5-a	$AM = \frac{AB}{2} = R \text{ and } EN = \frac{3R\sqrt{3}}{4}.$	0.5

	$BE = \frac{R}{2}$	0.5 + 0.25
5-b	$MN = \frac{R}{4}$ and $MB = R\sqrt{3}$ $\frac{3R\sqrt{3}}{4} + \frac{2R}{4} + \frac{R}{4} + \frac{4R\sqrt{3}}{4} = 7\sqrt{3} + 3$	
	R=4.	