الدورة العادية للعام ٢٠١٢	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم : الرقم :	مسابقة في مادة الفيزياء المدة ثلاث ساعات	

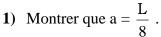
Cette épreuve est formée de quatre exercices répartis sur quatre pages numérotées de 1 à 4. L'usage d'une calculatrice non programmable est autorisé.

Premier exercice (8 points) Oscillation et rotation d'un système mécanique

Une tige rigide AB, de masse négligeable et de longueur L=2 m, peut tourner, sans frottement, autour d'un axe horizontal (Δ) qui lui est perpendiculaire et passant par son milieu O. Sur cette tige, peuvent coulisser, de part et d'autre de O, deux particules identiques (S) et (S'), chacune de masse m = 100 g.

Prendre: accélération de la pesanteur sur la Terre $g = 9.8 \text{ m/s}^2$;

Pour les angles faibles : $\cos \theta = 1 - \frac{\theta^2}{2}$ et $\sin \theta = \theta$ en rad.

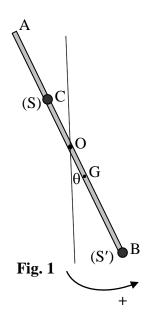

A- Mouvement oscillatoire

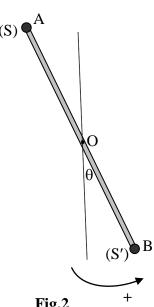
La particule (S) est fixée au point C de la tige à la distance $OC = \frac{L}{A}$ et la particule (S') est fixée en B (Fig.1). G est le centre de gravité du système (P) formé par la tige et les deux particules. On pose OG = a et I_0 le moment d'inertie de (P) par rapport à l'axe $(\Delta$

On écarte (P) d'un angle $\,\theta_{m}$ faible, autour de (Δ), à partir de la position d'équilibre stable, dans le sens positif indiqué sur la figure et on l'abandonne sans vitesse initiale à la date $t_0 = 0$; (P) oscille alors autour de l'axe (Δ) avec une période propre T. À une date t, l'abscisse angulaire du pendule pesant, ainsi constitué, est θ (θ étant l'angle que

fait la tige avec la verticale passant par O) et sa vitesse angulaire est $\theta = \frac{d\theta}{dt}$. On néglige toutes les forces de frottement et on prend le plan horizontal passant par O

comme niveau de référence de l'énergie potentielle de pesanteur.

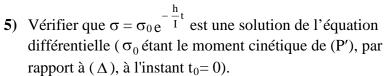



2) Montrer que
$$I_0 = \frac{5mL^2}{16}$$
.

- 3) Écrire, à la date t, l'expression de l'énergie mécanique du système (Terre, (P)) en fonction de I_0 , m, a, g, θ et θ' .
- 4) Établir l'équation différentielle du second ordre en θ qui régit le mouvement de
- 5) Déduire, en fonction de L et g, l'expression de T. Calculer sa valeur sur la Terre.
- 6) Le système (P) oscille maintenant sur la Lune. Dans ce cas, sa période propre, pour de faibles oscillations, est T'. Comparer, en le justifiant, T'et T.

B- Mouvement de rotation

Dans cette partie, les particules (S) et (S') sont fixées en A et B respectivement (Fig.2). À la date $t_0 = 0$, on lance le système (P') ainsi constitué, autour de (Δ) avec une vitesse angulaire initiale $\theta'_0 = 2 \text{ rad/s}$; (P') tourne alors, dans un plan vertical autour de (Δ) . À une date t, l'abscisse angulaire de la tige, par rapport à la verticale passant par O, est θ , et sa vitesse angulaire est $\theta' = \frac{d\theta}{dt}$. Au cours de la rotation, (P') est



soumis à un couple de forces de frottement dont le moment, par rapport à (Δ) est $M = -h \theta'$, où h est une constante positive.

- 1) Nommer, à une date t, le couple et les forces appliqués à (P').
- 2) Montrer que le moment résultant de ce couple et ces forces, par rapport à (Δ), est égal à M = h θ' .
- 3) Montrer que le moment d'inertie de (P') par rapport à (Δ) est I = 0,2 kgm².
- 4) En utilisant le théorème du moment cinétique $\frac{d\sigma}{dt} = \sum M_{ext}$, montrer que l'équation différentielle en σ

s'écrit : $\frac{d\sigma}{dt} + \frac{h}{I}\sigma = 0$, σ étant le moment cinétique de (P') par rapport à (Δ) .

- 6) La variation de σ en fonction du temps, est représentée par la courbe de la figure 3. Sur cette figure, on a tracé la tangente à la courbe au point D à la date $t_0 = 0$.
 - a) La courbe de la figure 3 est en accord avec la solution de l'équation différentielle. Pourquoi?
 - **b**) Déterminer la valeur de h.

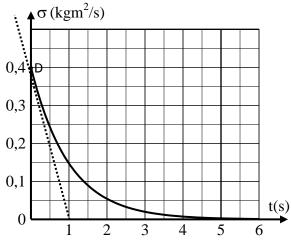
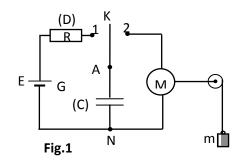



Fig.3

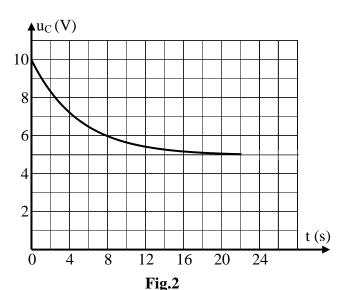
Deuxième exercice (6,5 points) Charge et décharge d'un condensateur

On réalise le montage schématisé par la figure 1, où G est un générateur de tension de f.é.m constante E = 10 V et de résistance intérieure négligeable, (C) un condensateur, préalablement non chargé, de capacité C = 1 F, (D) un conducteur ohmique de résistance $R=10 \Omega$, M un moteur électrique sur l'axe duquel est enroulée une corde, de masse négligeable, reliée à un solide de masse m = 1 kg et un interrupteur K (Fig.1). On donne $g = 10 \text{ m/s}^2$.

A- Charge du condensateur

K est en position 1 à la date $t_0 = 0$.

- 1) Déterminer l'équation différentielle qui décrit l'évolution de la tension u_{AN} = u_C aux bornes du condensateur.
- 2) La solution de l'équation différentielle est de la forme : $u_C = A + B e^{\frac{-t}{\tau}}$ où A, B et τ sont des constantes.


Déterminer les expressions de A, B et τ en fonction de E, R et C.

- 3) À la fin de la charge :
 - a) déduire la valeur de la tension u_C;
 - **b**) calculer, en J, l'énergie stockée dans le condensateur.

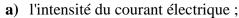
B- Décharge du condensateur dans le moteur

Le condensateur étant totalement chargé, on bascule K en position 2 à une date choisie comme une nouvelle origine de temps. Au bout d'une durée t₁, le solide s'élève d'une hauteur h = 1,5 m. À la date t_1 la tension aux bornes du condensateur est uc = u_1 .

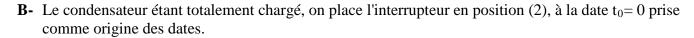
La variation de la tension u_C aux bornes du condensateur au cours de sa décharge dans le moteur

2

entre les dates 0 et t₁ est représentée par la courbe de la figure 2.


- 1) En se référant à la figure 2 :
 - a) donner la valeur de t₁, lorsque la tension u_C atteint la valeur minimale u₁;
 - **b)** donner la valeur de la tension u_1 .
- 2) À la date t₁, le condensateur stocke encore de l'énergie W₁.
 - a) Dire pourquoi.
 - **b)** Calculer la valeur de W₁.
- 3) L'énergie cédée par le condensateur est supposée reçue par le moteur.
 - a) Calculer la valeur W₂ de l'énergie cédée par le condensateur entre les dates 0 et t₁.
 - b) Sous quelles formes d'énergie, W2 est-elle transformée ?
 - c) Déterminer le rendement du moteur.

Troisième exercice (8 points) Oscillations électromagnétiques


Un circuit électrique est constitué d'un générateur de tension de f.é.m constante E=10~V et de résistance intérieure négligeable, d'un condensateur, initialement non chargé et de capacité $C=10^{-3}F$, d'une bobine d'inductance L=0,1~H et de résistance négligeable, d'un rhéostat de résistance variable R et d'un interrupteur K.

Dans le but d'étudier l'effet de R sur les oscillations électriques du circuit (R,L,C), on réalise le montage schématisé par la figure (1).

- **A-** L'interrupteur est placé en position (1).
 - 1) Nommer le phénomène physique qui aura lieu dans le circuit électrique.
 - 2) Après un temps suffisamment long de la fermeture du circuit, préciser les valeurs de :

- **b)** la tension $u_{AM} = u_C$ aux bornes du condensateur ;
- c) l'énergie électrique W_{éle} stockée dans le condensateur.

- **I-** la résistance du rhéostat est réglée à la valeur R = 0.
 - 1) Établir l'équation différentielle régissant l'évolution de $u_{C} = u_{AM}$ en fonction du temps.
 - 2) La solution de l'équation différentielle est de la forme $u_C = E \cos(\frac{2\pi}{T_0}t)$.
 - **a**) Déterminer, en fonction de L et C, l'expression de la période propre T₀ des oscillations électriques libres qui prennent naissance dans le circuit.
 - **b)** Calculer la valeur de T_0 .
 - 3) Exprimer, en fonction du temps, l'énergie électrique $W_{\text{\'ele}}$ emmagasinée dans le condensateur.
 - 4) L'énergie électrique $W_{\text{éle}}$ est une fonction périodique de période T'. Écrire la relation entre T' et T_0 .
 - 5) Calculer l'énergie électrique stockée dans le condensateur à la date $t_0 = 0$.
 - 6) Représenter l'allure de W_{éle} en fonction du temps.

II- Le rhéostat est réglé à une résistance R faible.

La variation de l'énergie électrique $W_{\text{éle}}$ en fonction du temps est représentée sur la figure (2).

En se référant à cette figure :

- 1) nommer le type des oscillations électriques ;
- 2) déterminer la valeur de la pseudopériode T des oscillations électriques ;
- 3) justifier qu'aux instants : 0 ; 31,5 ms ; 63 ms ; t_2 = 94,5 ms ; 126 ms,

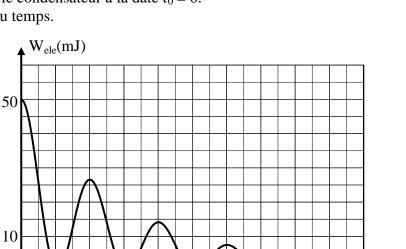


Fig.1

t(ms)

126

Fig.2

63

31.5

l'énergie totale emmagasinée dans le circuit est électrique.

- 4) préciser la forme de l'énergie dans le circuit à la date t₁;
- 5) préciser, entre les dates $t_0 = 0$ et t = 31,5 ms, l'intervalle de temps dans lequel :
 - la bobine fournit de l'énergie au circuit ;
 - le condensateur fournit de l'énergie au circuit.
- **6**) calculer l'énergie dissipée dans le rhéostat entre les dates t_0 =0 et t_2 .

III - Que se passe-t-il si on augmente trop la résistance du rhéostat ?

Quatrième exercice (7,5 points) Spectre de l'atome d'hydrogène

Rydberg a trouvé en 1885 la formule empirique donnant les longueurs d'onde des raies de la série de Balmer; d'autres séries ont été découvertes après cette date.

Un atome dans un état excité n, passe à un état d'énergie inférieur m, en rayonnant une onde électromagnétique de longueur d'onde λ , telle que :

$$\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2}), \quad \lambda \text{ en mètre et } R = 1,097 \times 10^7 \,\text{m}^{-1}.$$

On donne : Célérité de la lumière dans le vide $c = 2,998 \times 10^8 \text{m/s}$;

Constante de Planck $h = 6,626 \times 10^{-34} \text{ J.s}$; $1 \text{ eV} = 1,60 \times 10^{-19} \text{J.}$

- 1) Montrer que l'énergie E_n de l'atome d'hydrogène, correspondant au niveau d'énergie n, a pour expression $E_n = \frac{-hcR}{n^2}$.
- 2) Déduire que l'énergie E_n , exprimée en eV, peut s'écrire sous la forme $E_n = \frac{-13.6}{n^2}$.
- 3) Calculer la valeur de l'énergie :
 - a) maximale de l'atome d'hydrogène;
 - **b**) minimale de l'atome d'hydrogène ;
 - c) de l'atome d'hydrogène dans le premier état excité E₂;
 - **d**) de l'atome d'hydrogène dans le deuxième état excité E₃.
- 4) Déduire que l'énergie de l'atome est quantifiée.
- 5) Donner trois caractéristiques d'un photon.
- 6) a) Définir l'énergie d'ionisation W_i d'un atome d'hydrogène, pris dans son état fondamental.
 - **b)** Calculer la valeur de W_i.
 - c) Calculer la valeur de la longueur d'onde de la radiation susceptible de réaliser cette ionisation.
- 7) La série de Lyman correspond aux raies émises par l'atome d'hydrogène excité lorsqu'il revient à son niveau fondamental.
 - a) Déterminer les longueurs d'onde, maximale et minimale, de cette série.
 - **b)** À quel domaine (visible, infrarouge, ultra-violet) appartiennent-elles ?
- 8) a) Calculer les fréquences $v_{3\rightarrow 1}, v_{2\rightarrow 1}$, et $v_{3\rightarrow 2}$ des photons émis correspondant, respectivement, aux transitions $E_3 \rightarrow E_1, E_2 \rightarrow E_1$ et $E_3 \rightarrow E_2$ de l'atome d'hydrogène.
 - **b**) Vérifier la relation de **Ritz** $v_{3\rightarrow 1} = v_{3\rightarrow 2} + v_{2\rightarrow 1}$.

Premier exercice : Oscillation et rotation d'un système mécanique		8
Question	Réponse	
A-1	$2ma = mL/2 - mL/4 = mL/4 \implies a = \frac{L}{8}.$	1/2
A-2	$I_{0} = m(L/2)^{2} + m(L/4)^{2} = \frac{5mL^{2}}{16}.$ $E_{m} = E_{C} + E_{PP} = \frac{1}{2}I_{0}\theta^{2} - 2mgacos\theta$	
A-3	$E_{\rm m} = E_{\rm C} + E_{\rm PP} = \frac{1}{2} I_0 \theta^{2} - 2mga\cos\theta$	3/4
A-4	$\frac{dE_{m}}{dt} = 0 = I_{0}\theta'\theta'' + 2mga\theta'\sin\theta \Rightarrow I_{0}\theta'' + 2mga\theta = 0 \Rightarrow \theta'' + \frac{2mga}{I_{0}}\theta = 0.$	3/4
A-5	La pulsation propre du pendule est $\omega = \sqrt{\frac{2 \text{mga}}{I_0}} \Rightarrow$ $\text{la période est T} = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I_0}{2 \text{mga}}} = 2\pi \sqrt{\frac{5mL^2 \times 8}{16 \times 2mg \times L}} = 2\pi \sqrt{\frac{5L}{4g}} = 2\pi \sqrt{\frac{5 \times 2}{4 \times 9.8}} = 3,17s.$	1
A-6	$g(Lune) < g(Terre) \Rightarrow T(Lune) > T(Terre).$	1/2
B-1	Le poids, l'action de l'axe et le couple des forces de frottement.	1/4
B-2	Le poids et l'action de l'axe passent par l'axe, leurs moments sont nuls, le moment résultant est celui du couple de frottement $\Rightarrow \Sigma M = M = -h\theta'$.	1/2
B-3	$\Rightarrow \Sigma M = M = -h\theta'.$ $I = 2 \text{ m}(L/2)^2 = \text{mL}^2/2 = (0.1 \times 4)/2 = 0.2 \text{ kgm}^2.$	1/2
B-4	$\frac{d\sigma}{dt} = \sum M_{\text{ext}} = M = -h\theta', \text{ or } \sigma = I\theta' \Rightarrow \frac{d\sigma}{dt} = -\frac{h}{I}\sigma$ $\Rightarrow \frac{d\sigma}{dt} + \frac{h}{I}\sigma = 0.$	3/4
B-5	$\frac{d\sigma}{dt} = -\frac{h}{I}\sigma_0 e^{-\frac{h}{I}t} \Rightarrow -\frac{h}{I}\sigma_0 e^{-\frac{h}{I}t} + \frac{h}{I}\sigma_0 e^{-\frac{h}{I}t} = 0.$	1/2
B-6-a	Car pour $t = 0$, $\sigma_0 = I_{\times}\theta'_0 = 0.2 \times 2 = 0.4 \text{ kgm}^2/\text{s.}$ courbe décroissante et pour $t \to 5\text{s}$, $\sigma \to 0$.	1/2
B-6-b	$\frac{d\sigma}{dt} = -\frac{h}{I}\sigma_0 e^{-\frac{h}{I}t}, \ \ \dot{a} \ t = 0, \ \frac{d\sigma}{dt} = -\frac{h}{I}\sigma_0 = -\frac{0.4}{1} \Rightarrow h = \frac{0.4 \times 0.2}{0.4} = 0.2 \ \text{S.I.}$	1
Deuxième exercice : Charge et décharge d'un condensateur		6 1/2
Question	Réponse	
A-1	$E = Ri + u_C = RC \frac{du_C}{dt} + u_C$	1/2

A-2	$\frac{du_C}{dt} = -\frac{B}{\tau} e^{-\frac{t}{\tau}} \Rightarrow E = RC(-\frac{B}{\tau} e^{-\frac{t}{\tau}}) + A + B e^{-\frac{t}{\tau}} \Rightarrow A = E \text{ et } RC(-\frac{B}{\tau}) + B = 0 \Rightarrow \tau = RC \cdot Pour t = 0, u_C = 0 = A + B \Rightarrow B = -A = -E$	1 ½
A-3-a	On a $u_C = E (1 - e^{-\frac{t}{RC}})$, pour $t \to \infty$, $u_C \to E = 10 \text{ V}$.	1/2
A-3-b	$W = \frac{1}{2} C E^2 = \frac{1}{2} (1) (100) = 50 J.$	1/2
B-1-a	$t_1 = 22 \text{ s.}$	1/4
B-1-b	$u_1 = 5 \text{ V}.$	1/4
B-2-a	$car u_C = u_1 = 5 V \neq 0$.	3/4
B-2-b	$W_1 = \frac{1}{2} C(u_C)^2 = \frac{1}{2} (1) (5)^2 = 12,5 J.$	1/2
B-3-a	$W_2 = W - W_1 = 50 - 12,5 = 37,5 \text{ J}.$	1/2
B-3-b	Thermique et mécanique	1/4
В-3-с	Thermique et mécanique $r = \frac{mgh}{W_2} = \frac{1 \times 10 \times 1,5}{37,5} = 40 \%.$	1

Troisième o	oisième exercice : Oscillations électromagnétiques	
Question	Réponse	
A-1	La charge du condensateur	1/4
A-2-a-b-c	$i=0$; $u_C = E= 10V$; $W_{\text{éle}} = 1/2$ $CE^2 = \frac{1}{2}(10^{-3})(100) = 0.05$ J.	3/4
B-I-1	$\mathbf{u}_{\mathrm{C}} = \mathbf{u}_{\mathrm{AM}} = \mathbf{L} \frac{di}{dt}, \ \mathbf{i} = -\mathbf{C}(\mathbf{u}_{\mathrm{C}})' \Rightarrow \frac{di}{dt} = -\mathbf{C}(\mathbf{u}_{\mathrm{C}})'' \Rightarrow (\mathbf{u}_{\mathrm{C}})'' + \frac{1}{LC} \mathbf{u}_{\mathrm{C}} = 0$	1
B-I-2-a	$\begin{aligned} &\mathbf{u}_{\mathrm{C}} = \mathbf{E} = 10 \mathbf{V} \; ; \; \mathbf{W}_{\mathrm{ele}} = 1/2 \; \mathrm{CE} = 72 (10^{\circ}) (100) = 0,03 \; \mathrm{J}. \\ &\mathbf{u}_{\mathrm{C}} = \mathbf{u}_{\mathrm{AM}} = \mathbf{L} \frac{di}{dt} \; , \; \mathbf{i} = -\mathbf{C}(\mathbf{u}_{\mathrm{C}})' \Rightarrow \frac{di}{dt} = -\mathbf{C}(u_{\mathrm{C}})'' \Rightarrow \; (\mathbf{u}_{\mathrm{C}})'' + \frac{1}{LC} \mathbf{u}_{\mathrm{C}} = 0 \\ &(\mathbf{u}_{\mathrm{C}})' = -\frac{2\pi}{T_0} E \sin \frac{2\pi}{T_0} t \; , \; (\mathbf{u}_{\mathrm{C}})'' = -(\frac{2\pi}{T_0})^2 E \cos \frac{2\pi}{T_0} t \; , \; \text{en remplaçant dans l'équation} \\ &\mathrm{différentielle, on obtient} : \; -(\frac{2\pi}{T_0})^2 E \cos \frac{2\pi}{T_0} t + \frac{1}{LC} E \cos \frac{2\pi}{T_0} = 0 \Rightarrow \\ &(\frac{2\pi}{T_0})^2 = \frac{1}{LC} \Rightarrow T_0 = 2\pi \sqrt{LC} \end{aligned}$	1
B-I-2-b	$T_0 = 2\pi\sqrt{10^{-4}} = 0.0628 \text{ s} = 62.8 \text{ ms}.$	1/4
B-I-3	$W_{\text{éle}} = \frac{1}{2} C(u_{\text{C}})^2 = \frac{1}{2} CE^2 \cos^2(\frac{2\pi}{T_0}t) = 0,05\cos^2(100t).$	1/2
B-I-4	$T' = T_0/2$.	1/4
B-I-5	Pour $t_0=0$, on a $W_{\text{éle}}=0.05 \text{ J}$.	1/4
B-I-6	Wéle.	1/2
B-II-1	Les oscillations sont libres amorties	1/4
B -II-2	2T = 126 ms; $T = 63 ms$.	1/2
B -II-3	Aux instants :0 ; 31,5 ms ; 63 ms ; 94,5 ms ; 126 ms ; 1'énergie électrique est maximale \Rightarrow u _C est max. \Rightarrow i =C(u _C)=0 \Rightarrow l'énergie magnétique E _{mag} = ½ L(i) ² est	3/4

	nulle⇒E _{totale} du circuit est électrique.	
B - II -4	l'énergie est magnétique	1/4
D - 11 -4		74
B - II -5	$0 < t < t_1 : W_{\text{éle}}$ diminue \Rightarrow le condensateur fournit de l'énergie à la bobine. $t_1 < t < 31,5$	
D II (ms: $W_{\text{éle}}$ augmente \Rightarrow la bobine fournit de l'énergie au condensateur.	1/2
B - II -6	W(dissipée) = 50 - 7,5 = 42,5 mJ.	
B - III	L'énergie électrique est vite dissipée dans le rhéostat et le régime est non oscillatoire	1/2
	(apériodique)	
Quatrième	exercice : Spectre de l'atome d'hydrogène	7 ½
Question	Réponse	
1	$E = \frac{hc}{hc} + \frac{hc}{hc} \times \frac{R}{hc} \times \frac{R}{hc} + \frac{hc}{hc} \times \frac{R}{hc} \times $	3/
1	$E_{n} - E_{m} = \frac{hc}{\lambda} = hc \times R(\frac{1}{m^{2}} - \frac{1}{n^{2}}) \Rightarrow E_{n} = -\frac{hcR}{n^{2}}$ On a hcR = 6,626×10 ⁻³⁴ ×2,998×10 ⁸ ×1,097×10 ⁷ (en J) = 21,79×10 ⁻¹⁹ J = 13,6 eV \Rightarrow	3/4
	On a hcR = $6.626 \times 10^{-34} \times 2.998 \times 10^{8} \times 1.097 \times 10^{7}$ (en J) = 21.79×10^{-19} J = 13.6 eV \Rightarrow	
2		3/4
_	$E_{n} = -\frac{13.6}{n^{2}} \text{ eV}.$, .
3-a	Si $n \to \infty$, $E_{max} \to 0$.	1/4
3-a		1/4
3-0	Si n \rightarrow 1, E _{min} = - 13,6 eV.	/4
3-с	$E_2 = -\frac{13.6}{2^2} = -3.4eV$	1/4
3-d	E_3 pour $n = 3 \implies E_3 = -1,51 \text{ eV}.$	1/4
4	Seules certaines valeurs E_n (-13,6;-3,4;-1,51;-0,85) sont permises.	1/4
5	Le photon a : une masse nulle, une charge nulle, une vitesse dans le vide c, une énergie hv.	3/4
6-a	L'énergie d'ionisation est l'énergie qu'il faut fournir à l'atome pour lui arracher, sans	1/2
	vitesse, son électron.	
6-b	$W_i + (-13,6) = 0$; $W_i = 13, 6$ eV.	1/2
6-c	Ona: $\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2})$ pour $n \to \infty$ et m = 1, on a: $\frac{1}{\lambda} = R = 1,097 \times 10^7$	1/2
	$\Rightarrow \lambda = 0.911 \times 10^{-7} m.$	
	Ona: $\frac{1}{\lambda} = R(\frac{1}{m^2} - \frac{1}{n^2})$; pour m = 1 et n = 2, on obtient $\lambda_{\text{max}} = 0.121 \times 10^{-6} \text{m}$ pour m=1 et	
7-a	$\lambda = \kappa(\frac{1}{n^2} - \frac{1}{n^2})$, pour m=1 et n=2, on obtient $\kappa_{\text{max}} = 0.121 \times 10$ m pour m=1 et	1/2
	$n\rightarrow\infty$, on obtient $\lambda_{min}=0.091\times10^{-6}m$.	
7-b	Au domaine ultra-violet.	1/4
	Ona: $\frac{1}{2} = R(\frac{1}{m^2} - \frac{1}{n^2})$. Pour m=1 et n=3, on trouve	
	$\frac{\partial na}{\partial x} \cdot \frac{1}{m^2} - \frac{1}{n^2}$). Pour m=1 et n=3, on trouve	
	$1 1 1 8 \dots c$	
	$\frac{1}{\lambda} = R(\frac{1}{1^2} - \frac{1}{3^2}) = \frac{8}{9}R = 0.975 \times 10^7 v = \frac{c}{\lambda} \implies v_{3 \to 1} = 2.92 \times 10^{15} \text{ Hz.}$	
8-a		1 1/4
	Pour m=1 et n=2 on a $\frac{1}{\lambda} = R(\frac{1}{1^2} - \frac{1}{2^2}) = \frac{3}{\lambda}R = 0.82275 \times 10^7 \Rightarrow v_{2\to 1} = 2.47 \times 10^{15} \text{ Hz.}$	
	70 1 2 7	
	Pour m=2 et n=3 on a $\frac{1}{\lambda} = R(\frac{1}{2^2} - \frac{1}{3^2}) = \frac{5}{36}R = 0,15236 \times 10^7 \Rightarrow v_{3\to 2} = 0,46 \times 10^{15} \text{ Hz.}$	
8-b	Ce qui vérifie $v_{3\rightarrow 1} = v_{3\rightarrow 2} + v_{2\rightarrow 1}$	1/2