المادة:الرياضيات الشهادة: المتوسطة نموذج رقم -6المدّة : ساعتان	الهيئة الأكاديميّة المشتركة قسم : الرياضيات	

$$
\begin{aligned}
& \text { ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. } \\
& \text { ـ يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة. }
\end{aligned}
$$

I- (2 points)

Answer "True" (T) or "False" (F) and justify your answer.

1) The solution of the inequality $\frac{-2 x+3}{-3} \leq \frac{x+1}{-3}$ is $x \geq \frac{2}{3}$.
2) The price of an object becomes 90000 LL after two successive reductions of 20%. Its initial price is 150000 LL .
3) If $x^{2}=\frac{\sqrt{\frac{35}{15}}}{\sqrt{14}}+\frac{5}{7}\left(1-\frac{3}{10}\right)^{2}$, then $x=\frac{3 \sqrt{15}}{10}$ or $x=-\frac{3 \sqrt{15}}{10}$.
4) $\left(-\sqrt{\frac{5}{2}}-x \sqrt{\frac{1}{2}}\right)^{2}=\frac{1}{2}(\sqrt{5}-x)^{2}$.

II- (3points)

Let x be a number that is greater than or equal to 4 .
ABCD is a square.
AFED is a rectangle, where $D F^{2}=5 x^{2}-10 x+10$.

1) If $A F=x+1$, show that the side of the square $A B C D$ is $2 x-$ 3.
2) Prove that F cannot be the midpoint of $[\mathrm{AB}]$.
3)

a) Show that the area A of the rectangle BCEF is expressed by the relation:

$$
A=(2 x-3)^{2}-(2 x-3)(x+1)
$$

b) Factorize A .
c) For which value of x does the area of the rectangle BCEF become one third of that of the triangle AFD?

III- (3points)

The director of a school organizes a trip for Grade 9 students at the end of the year. He decides not to make the trip if the percentage of participants is less than 70% of all grade nine students.
The table below shows the answers for each section.

Section	Total Number of Students	Answer
Gr. 9A	35 students(among them 20 girls)	$\frac{2}{5}$ of the girlsand $\frac{1}{5}$ of the boys will not participate.
Gr. 9B	24 students (among them 14 boys)	50% of the girls and $\frac{2}{7}$ of the boys will not participate.
Gr. 9C	30 students (among them 15 boys)	60% of the girls and 80% of the boys will participate.

1) In each section, find the number of students who will participate in this trip.
2) Will the director of the school make the trip?

IV- (2 points)

A bag contains x red balls and y blue balls.
If we replace 5 blue balls by 5 red balls, the number of red balls will be twice the number of blue balls.
If we take 3 red balls from the bag, the number of blue balls will be twice the number of red balls.

1) Choose the system that models the text given above .

$$
\left\{\begin{array} { l }
{ \mathrm { x } + 5 = 2 \mathrm { y } } \\
{ 2 (\mathrm { x } - 3) = \mathrm { y } }
\end{array} \text { or } \left\{\begin{array}{l}
\mathrm{x}+5=2(\mathrm{y}-5) \\
2(\mathrm{x}-3)=\mathrm{y}
\end{array}\right.\right.
$$

2) Calculate x and y.

V- (5 points)

In an orthonormal system of axes $\mathrm{x}^{\prime} \mathrm{Ox}$ and $\mathrm{y}^{\prime} \mathrm{Oy}$, consider the line (D) with equation $\mathrm{y}=-2 \mathrm{x}+4$ and the two points $\mathrm{I}(1 ; 2)$ and $\mathrm{C}(4 ; 4)$.

1) (D) intersects $x^{\prime} O x$ at A and $y^{\prime} O y$ at B. Calculate the coordinates of the two points A and B, then draw line (D).
2) Verify that I is the midpoint of segment $[\mathrm{AB}]$.
3)

a) Write an equation of the median issued from point O in triangle OAB .
b) Calculate, to the nearest one degree, the measure of the angle that line (OI) makes with the axis $x^{\prime} O x$.
4) Let (D^{\prime}) be the perpendicular bisector of segment [BC] that intersects it at J .
a) Write an equation for (D^{\prime}).
b) Deduce that $\mathrm{AB}=\mathrm{AC}$.
5) Let L be the orthogonal projection of point I on the axis $\mathrm{x}^{\prime} \mathrm{Ox}$. Show that the two triangles ILA and AJC are similar. Deduce that AC $=2 \mathrm{OI}$.

VI- (5points)

In the next figure ,EFG is an isosceles triangle with vertex E, where $\mathrm{FG}=5 \mathrm{~cm}$ and $\mathrm{EG}=6 \mathrm{~cm}$.
The circle (C) with center O and diameter [EG] intersects with the segment [FG] at k.

1) Reproduce the figure in real measures.
2)

a) Show that K is the midpoint of segment [FG].
b) Calculate the value of EK to the nearest millimeter.

3) Let S be the image of K under the translation of vector $\overrightarrow{\mathrm{FE}}$.
a) Plot the point S on the figure.
b) Prove that ESGK is a rectangle.
4) Let P be a point on segment [EG] distinct from O. The parallel through P to (FG) intersects (EF) at R. Suppose that x is the length, expressed in cm, of segment [EP].
a) What is the nature of triangle EPR? Justify your answer.
b) Prove that $\mathrm{PR}=\frac{5 \mathrm{x}}{6}$ and express, in terms of x , the perimeter of triangle EPR.
c) Show that the perimeter of the trapezoid RPGF is equal to $\frac{-7 x}{6}+17$.
d) Can you find a position for point P on segment [EG] so that the triangle and the trapezoid have the same perimeter? Justify your answer.

المادة: الرياضيات الشهادة: المتوسطة نموذج رقم -6المدّة : ساعتان	الهيئة الأكاديميّة المشتركت	

Question I	Mark	
$\mathbf{1}$	False because when we multiply by a negative number, the inequality changes.	$\mathbf{0 . 5}$
$\mathbf{2}$	False because $\frac{90000}{0.64}=140625 \mathrm{LL}$.	$\mathbf{0 . 5}$
$\mathbf{3}$	True because $\mathrm{x}^{2}=1+\frac{5}{7} \times \frac{7^{2}}{10^{2}}$, then $\mathrm{x}=\frac{3 \sqrt{15}}{10}$ or $\frac{-3 \sqrt{15}}{10}$.	$\mathbf{0 . 5}$
$\mathbf{4}$	False because it is $\frac{5}{2}+\frac{\mathrm{x}^{2}}{2}+\frac{2 \mathrm{x} \sqrt{5}}{2}=\frac{1}{2}(\sqrt{5}+\mathrm{x})^{2}$.	$\mathbf{0 . 5}$

Question II	Mark	
$\mathbf{1}$	Using Pythagoras: $\mathrm{AD}^{2}=\mathrm{DF}^{2}-\mathrm{AF}^{2}$, alors $\mathrm{AD}=2 \mathrm{x}-3$	$\mathbf{0 . 5}$
$\mathbf{2}$	$\mathrm{AB}=2 \mathrm{AF}$, then $2 \mathrm{x}-3=2 \mathrm{x}+2$ has no solution	$\mathbf{0 . 5}$
3.a	$\mathrm{A}_{\mathrm{BCEF}}=\mathrm{A}_{\mathrm{ABCD}}-\mathrm{A}_{\mathrm{AFED}}=(2 \mathrm{x}-3)^{2}-(2 \mathrm{x}-3)(\mathrm{x}+1)$	$\mathbf{0 . 5}$
3.b	$\mathrm{A}=(2 \mathrm{x}-3)(\mathrm{x}-4)$	$\mathbf{0 . 5}$
3.c	$(2 \mathrm{x}-3)(\mathrm{x}-4)=\frac{(x+1)(2 x-3)}{6} ; \mathrm{x}=5$.	$\mathbf{1}$

Question III		Mark
$\mathbf{1}$	In Gr. 9A: The number of students who will participate is $\frac{3}{5} \times 20+\frac{4}{5} \times 15=24$	$\mathbf{0 . 5}$
	In Gr. 9B:The number of students who will participate is $5+\frac{5}{7} \times 14=15$ In Gr. 9C: The number of students who will participate is $\frac{3}{5} \times 15+\frac{4}{5} \times 15=21$	$\mathbf{0 . 5}$
$\mathbf{2}$	The number of students who will participate in Gr. 9 is 60 The percentage is $\frac{60}{89} \times 100=67.41 \%$ and the director will not make the trip.	$\mathbf{0 . 5}$

Question IV		Mark
$\mathbf{1}$	$\left\{\begin{array}{l}\mathrm{x}+5=2(\mathrm{y}-5) \\ 2(\mathrm{x}-3)=\mathrm{y}\end{array}\right.$	$\mathbf{1}$
$\mathbf{2}$	$\mathrm{x}=9$ and $\mathrm{y}=12$	$\mathbf{1}$

Question V		Mark
$\mathbf{1}$	$\mathrm{A}(2 ; 0)$ and $\mathrm{B}(0 ; 4)$ (D) passes through A and B	$\mathbf{0 . 7 5}$
$\mathbf{2}$	$\frac{\mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}}}{2}=1=\mathrm{x}_{\mathrm{I}}$ and $\frac{\mathrm{y}_{\mathrm{A}}+\mathrm{y}_{\mathrm{B}}}{2}=2=\mathrm{y}_{\mathrm{I}}$	$\mathbf{0 . 5}$
3.a	$(\mathrm{OI}): \mathrm{y}=2 \mathrm{x}$	$\mathbf{0 . 5}$
3.b	$\tan \alpha=2=\mathrm{a}_{(\mathrm{OI})}$, then $\alpha=\tan ^{-1} 2=63.43 \approx 63^{\circ}$	$\mathbf{0 . 5}$

4.a	$\mathrm{y}_{\mathrm{C}}=\mathrm{y}_{\mathrm{B}}=4$, then $(\mathrm{BC}): \mathrm{y}=4, \mathrm{x}_{\mathrm{J}}=\frac{\mathrm{x}_{\mathrm{C}}+\mathrm{x}_{\mathrm{B}}}{2}=2$. Thus $\left(\mathrm{D}^{\prime}\right): \mathrm{x}=2$	$\mathbf{0 . 7 5}$
4.b	$\mathrm{x}_{\mathrm{A}}=2$, then $\left(\mathrm{D}^{\prime}\right)$ passes through $\mathrm{A} . \operatorname{Then} \mathrm{AB}=\mathrm{AC}$.	$\mathbf{0 . 5}$
$\mathbf{5}$	ILA and AJC are similar because $\hat{\mathrm{L}}=\hat{\mathrm{J}}=90^{\circ}$ $\hat{\mathrm{C}}=\hat{\mathrm{A}}$ since the triangle ABC is isosceles $(\hat{\mathrm{C}}=\hat{\mathrm{B}}$ and $\hat{\mathrm{B}}=\hat{\mathrm{A}}$ (alternate interior $)$ Ratio of similitude: $\frac{\mathrm{IL}}{\mathrm{AJ}}$ but $\mathrm{AI}=\frac{\mathrm{AL}}{\mathrm{JC}}=\frac{\mathrm{IA}}{\mathrm{AC}}=\frac{1}{2}$, then $\mathrm{AC}=2 \mathrm{AI}$ $\mathbf{1}$	$\mathbf{0 . 5}$

Question VI		Mark
1		0.5
2.a	EKG is a right triangle at K(inscribed in a semi-circle)and EFG is an isosceles triangle with vertex E , then [EK]is an altitude and median, then K is the midpoint of [FG]	0.5
2.b	By Pythagoras: $\mathrm{EK}^{2}=\mathrm{EG}^{2}-\mathrm{KG}^{2}$, then $\mathrm{EK}=5.45$	0.5
3.a	$\overrightarrow{\mathrm{KS}}=\overrightarrow{\mathrm{FE}}$ (by translation)	0.5
3.b	$\overrightarrow{\mathrm{ES}}=\overrightarrow{\mathrm{FK}}$ since ESFK is a parallelogram, and $\overrightarrow{\mathrm{KG}}=\overrightarrow{\mathrm{FK}}$ since K is the midpoint of [FG], then $\overrightarrow{\mathrm{ES}}=\overrightarrow{\mathrm{KG}}$ and $\hat{\mathrm{K}}=90^{\circ}$. Thus ESGK is a rectangle.	0.75
4.a	EPR is an isosceles triangle since $\hat{R}=\hat{F}$ and $\hat{P}=\hat{G}$ (corresponding angles), but $\hat{G}=\hat{F}$, thus $\hat{R}=\hat{\mathrm{P}}$.	0.5
4.b	By Thales: $\frac{E P}{E G}=\frac{E R}{E F}=\frac{R P}{F G}=\frac{x}{6}$, then $R P=\frac{5 x}{6}$.	0.75
4.c	$\frac{5 x}{6}+6-\mathrm{x}+6-\mathrm{x}+5=\frac{-7 \mathrm{x}}{6}+17$	0.5
$4 . \mathrm{d}$	$17=\frac{-7 x}{6}+17$, then $\mathrm{x}=0$. Thus a position for P cannot be found.	0.5

