الاسم:	مسابقة في مادة الكيمياء	
الرقم:	المدة ساعتان	

This Exam Includes Three Exercises. It Is Inscribed on 4 Pages Numbered From 1 to 4. The Use of A Non-programmable Calculator is Allowed.

Answer The Three Following Exercises:

First Exercise (7 points) Acid-Base Reaction

The label of a bottle containing a commercial hydrobromic acid solution shows, among others, the following indications:

46 % by mass of HBr; density: 1.47 g.mL^{-1} .

The aim of this exercise is to perform an acid-base study of a dilute aqueous hydrobromic acid solution.

Given:

- M(HBr) = 81 g.mol⁻¹ - pKa (NH $_{4}^{+}$ /NH₃) = 9.2

1- Dilution of the Commercial Solution

- 1.1- Show that the molar concentration of the commercial solution is $C_0 = 8.35$ mol.L⁻¹.
- 1.2- Describe the experimental procedure to be followed in order to prepare 1 L of a solution (S) by diluting the commercial solution 200 times .
- 1.3- The pH of the solution (S) is equal to 1.38
- 1.3.1- Show that HBr is a strong acid.
- 1.3.2- Write the equation of its reaction with water.

2- Titration of an Aqueous Ammonia Solution.

The solution (S) is added, progressively, into a beaker containing a volume $V_b = 10.0 \text{ mL}$ of an ammonia solution (NH₃) of concentration C_b , in the presence of an appropriate colored indicator. The volume of the acid added to reach equivalence is $V_{aE}=12\text{ml}$

- 2.1- Write the equation of the titration reaction.
- 2.2- Justify, based on the chemical species present at equivalence, the acid character of this medium.
- 2.3- Show that the concentration of the ammonia solution is $C_b = 5.0 \times 10^{-2}$ mol.L⁻¹.
- 2.4- Calculate the volume of ammonia gas needed to prepare 1 L of the ammonia solution of concentration C_b , knowing that the molar volume of a gas is $V_m = 24 \text{ L.mol}^{-1}$.

3- Preparation of a Buffer Solution

Determine the volume V_1 of the solution (S) that should be added to a volume $V_2 = 50$ mL of the ammonia solution of concentration C_b in order to prepare a buffer solution of pH = 9.0

Second Exercise (6 points) Synthesis of an Ester

Available are two flasks: one containing glacial (pure) ethanoic acid and the other contains a liquid of a pure saturated noncyclic chain organic compound (A).

The aim of this exercise is to identify the organic compound (A) then to study its reaction with ethanoic acid.

1- Identification of the Family of (A)

In order to identify the chemical family of the compound (A), the experiments listed below are carried out:

Number of the experiment	Experiment	Result of the experiment
1	(A) + sodium metal	Hydrogen gas release.
	Heating a mixture of :	Formation of an organic compound
2	(A)+ thionyl chloride (SOCl ₂)	(B) accompanied with the release of
		two gases.

Moreover, a study of the compound (B) shows that the molecule of the compound (B) contains only carbon, hydrogen and chlorine.

- 1.1- Interpret the result of experiment 1.
- 1.2- Deduce from the experiment 2, the possible chemical families of the compound (B).
- 1.3- Show that the compound (A) is an alcohol of general formula $C_xH_{2x+2}O$.

2- Esterification Reaction

A mixture of 0.5 mol of ethanoic acid and of 0.5 mol of the compound A is heated. At equilibrium, a quantity of 0.3 mol of an ester E of molecular formula $C_6H_{12}O_2$ is obtained.

Given: The equilibrium constant K, associated with the equation:

 $RCOOH_{(l)} + R'OH_{(l)} \rightleftharpoons RCOOR'_{(l)} + H_2O_{(l)}$

is equal to 4.12 if the alcohol is primary and to 2.25 if the alcohol is secondary.

- 2.1- Determine the molecular formula of the alcohol (A).
- 2.2- Write the possible condensed structural formulas of the ester (E).
- 2.3- Show that the equilibrium constant of the equilibrium realized above is equal to 2.25
- 2.4- Identify the alcohol (A) and name the ester (E).

2.5- Represent, according to Cram, the two enantiomers of the alcohol (A).

Third Exercise (7 points) Oxidation of Iodide Ions

A solution (S) is prepared by mixing a volume 100 mL of a potassium iodide solution(K⁺ + Γ) of concentration C₁ = 0.80 mol.L⁻¹ with a volume 100 mL of sodium peroxydisulfate solution (2 Na⁺ + S₂O₈⁻⁻) of concentration C₂ = 0.20 mol.L⁻¹.

A brown color is observed which intensifies with time representing a complete reaction that takes place according to the following equation:

$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$$

At different time intervals, a precise volume of the solution (S) is taken and the iodine formed is titrated, in the presence of starch solution, using a sodium thiosulfate solution($2 \text{ Na}^+ + S_2 O_3^{2-}$) according to the equation:

$$I_2 + 2 S_2 O_3^{2-} \rightarrow 2 I^- + S_4 O_6^{2-}$$

Given:

Fe²⁺ is a catalyst for the reaction of formation of iodine.
M (Na₂S₂O₃. 5 H₂O) = 248 g.mol⁻¹

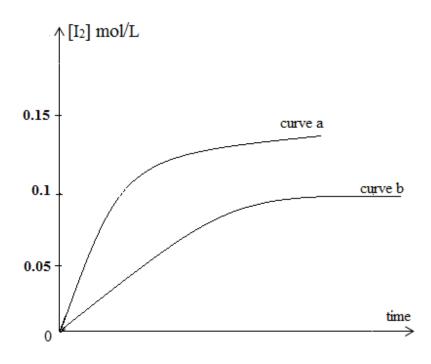
1- Preparation of Sodium Thiosulfate Solution

The sodium thiosulfate solution, used to titrate iodine, is prepared by dissolving a mass m = 25.0 g of the hydrated powder (Na₂S₂O₃.5H₂O) in distilled water in order to have a solution of volume V = 500.0 mL.

1.1- List the essential materials needed to carry out this preparation.

1.2- Calculate the molar concentration C of this solution.

2- Titration of Iodine


2.1- Propose, by justifying, an experimental way to stop the formation of iodine in each volume taken before carrying out titration.

2.2- Specify the color change at equivalence.

3- Kinetic Study

3.1- Given the shapes of the two curves a and b. Choose the one that corresponds to the change of the iodine concentration, in the solution S,

versus time: $[I_2] = f(t)$.Justify

- 3.2- The experimental study shows that this reaction ends at t = 70 min.
- 3.2.1- Define the half- life time of the reaction
- 3.2.2- Choose, by justifying, among the three following proposals, the appropriate one for the half-life time :

$$t_{1/2} = 35 \text{ min}$$
; $t_{1/2} > 35 \text{ min}$; $t_{1/2} < 35 \text{ min}$.

3.3- The interval of time Δt denotes the end time of reaction for each of the reacting mixtures considered in the table below:

Reacting mixture	Temperature of the	Δt
	mixture	
Mixture (1) :a volume V of solution (S)	$40^{\circ}\mathrm{C}$	Δt_1
Mixture (2) :a volume V of solution (S)	$20^{\circ}C$	Δt_2
+ few mL of a solution of Fe^{2+} ions		
(without a noticeable change in		
volume).		

Verify whether Δt_1 and Δt_2 could be compared.