امتحانات الشهادة المتوسطة

مسابقة في مادة الفيزياء الاسم: المدة ساعة الرقم:

This exam is formed of three obligatory exercises in two pages Non- programmable calculators are allowed.

First exercise: Determination of the focal length of a converging lens (7 points)

The aim of this exercise is to determine the focal length f of a converging lens (L). For this, we place an object (AB) at a distance p from (L) perpendicular at A to its optical axis. On the other side of the lens, we place a screen (E), parallel to (AB), at a distance p' from (L).

We adjust the values of p and p' in such a way that the image (A'B') of (AB) is formed sharply on (E) and

AB = A'B'

- 1) Specify the nature of the image (A'B').
- 2) Deduce that the image (A'B') is inverted with respect to (AB).
- 3) The figure below shows (AB), (A'B'), the screen (E) and the optical axis x'x of the lens (L).

- a) Redraw, with the same scale, the above figure.
- **b**) Determine graphically the position of the optical center O of (L) and represent (L) on the figure.
- c) Trace the emergent ray corresponding to a luminous ray issued from B parallel to the optical axis.
- d) This emergent ray meets the optical axis at a particular point M. What does M represent for the lens (L)?
- e) Determine graphically p and p'.
- f) Compare p and p'. Deduce the relation between p and f.
- **g**) Deduce the value of f.

Second exercise: Electric power (7 points)

The aim of this exercise is to compare the sum of the electric power

consumed by a grouping of resistors with that consumed by

the equivalent resistor of this grouping.

Consider the circuit of the adjacent figure.

Given: $R_1 = 60 \Omega$; $R_2 = 30 \Omega$; $R_3 = 20 \Omega$; $I_1 = 1 A$.

I- Power consumed by the grouping

- 1) Calculate the voltage U_{AM} across the terminals of R_1 .
- **2**) Show that the current carried by R_2 is $I_2 = 2$ A.
- **3**) Deduce the current I carried by R₃.

4) Calculate the electric power consumed by each of the three resistors.

5) Deduce the total electric power P_{total} consumed by the three resistors.

II- Power consumed by the equivalent resistor

- 1) Calculate the resistance R' of the resistor equivalent to R_1 and R_2 .
- **2**) Show that the resistance equivalent to R' and R₃ is $R_e = 40 \Omega$.
- 3) Calculate the electric power P_e consumed by R_e .

III- Comparison of electric powers

Compare P_{total} and P_{e} .

Third exercise: Gravitational field strength on the Moon (6 points)

The aim of this exercise is to verify experimentally the relation between the values of the gravitational field strength g_M on the Moon's surface and the gravitational field strength g on the Earth's surface. For this, we consider a spring (R) of stiffness k = 50 N/m and a solid (S) of mass M.

Take g = 10 N/kg.

First experiment:

On the Earth's surface, we fix the extremity O of (R) to a support and we suspend the solid (S) to its free extremity A.

At equilibrium, the elongation of the spring (R) is $\Delta \ell_1 = 12$ cm.

(S) is submitted to two forces.

1) Give the name of each force.

- 2) Write the vector relation between these two forces.
- 3) Determine the magnitude of each force.
- 4) Deduce that M = 0.6 kg.

Second experiment:

The same experiment is performed on the Moon's surface. At equilibrium, the elongation of (R) is

 $\Delta \ell_2 = 2$ cm.

- 1) Determine the new magnitude of each of the two forces acting on (S).
- 2) Knowing that the mass of (S) remains the same, deduce the value of g_M .

3) Verify that
$$g_M = \frac{1}{6}g$$
.

مسابقة في مادة الفيزياء المدة ساعة

مشروع معيار التصحيح

First exercise (7 points)			
Part of the Q	Answer	Mark	
1	The image is real since it is collected on the screen.	0.5	
2	Since (A'B') is real	0.5	
3. a)	Reproduction.	0.5	
3. b)	Join B and B' the intersection between BB' and the optical axis is O because any ray passes through the optical center emerges without deviation. Or (B,O and B' are collinear) + tracing of BB' and representation of L	2	
3. c)	Tracing	0.5	
3.d)	M represents the image focus of (L).	0.5	
3. e)	$p = 4 \times 15 = 60 \text{ cm}$, $p' = 4 \times 15 = 60 \text{ cm}$	1	
3.f)	$p = p' = 60 \text{ cm}$. since $p = p' \implies p = 2f$.	1	
3. g)	$f = \frac{p}{2}$ then $f = 30$ cm	0.5	

Second exercise (7 points)

Part of the O	Answer	Mark
I. 1)	$U_{AM} = R_1 I_1 = 60 \times 1 = 60 V$	1
I.2)	$U_{AM} = R_2 I_2 \Longrightarrow I_2 = \frac{U_{AM}}{R_2} = \frac{60}{30} = 2 A$	0.5
I.3)	Law of addition of currents: $I = I_1 + I_2 \implies I = 3 A$	0.5
I.4)	$P_{1} = R_{1} I_{1}^{2} = 60.1^{2} = 60 W$ $P_{2} = R_{2} I_{2}^{2} = 30 \times 2^{2} = 120 W$ $P_{3} = R_{3} I_{3}^{2} = 20 \times 3^{2} = 180 W$	1.5
I.5)	$P_{total} = P_1 + P_2 + P_3 = 360 \text{ W}$	0.75
II. 1)	$\frac{1}{\mathbf{R}'} = \frac{1}{\mathbf{R}_1} + \frac{1}{\mathbf{R}_2} \Longrightarrow \mathbf{R}' = \frac{60 \times 30}{60 + 30} = 20 \ \Omega$	1
II.2)	$\operatorname{Re} = \operatorname{R}' + \operatorname{R}_3 \Longrightarrow \operatorname{Re} = 40 \ \Omega$	0.5
II.3)	$Pe = Re.I^2 = 40 \times 3^2 = 360 W$	0.75
II.4)	$Pe = P_{total}$	0.5

Third exercise (6 points)

Part of the Q	Answer	Mark
I.1	\vec{W} : weight of (S) \vec{T} : tension of the spring	0.5
I.2	$\vec{W} + \vec{T} = \vec{0}$	0.5
I.3	$T = k. \Delta \ell_1$ (Hooke's law) $\Rightarrow T = 50x0.12 = 6 N$ since the system at equilibrium $W = T = 6 N$	1.5
I.4	$W = M.g \implies M = 0.6 \text{ kg}$	1
II.1	$T' = k. \Delta \ell_2 = 1 N \implies W' = T' = 1 N$	1
II.2	W' = M.g _M thus $g_M = 1.66$ N/kg	0.5
II.3	$\frac{g}{6} = 1.66$ then $g_{\rm M} = \frac{g}{6}$	1