This exam is formed of three obligatory exercises in two pages
 Non- programmable calculators are allowed.

First exercise: Determination of the focal length of a converging lens (7 points)

The aim of this exercise is to determine the focal length f of a converging lens (L). For this, we place an object (AB) at a distance p from (L) perpendicular at A to its optical axis. On the other side of the lens, we place a screen (E), parallel to (AB), at a distance p^{\prime} from (L).
We adjust the values of p and p^{\prime} in such a way that the image ($A^{\prime} B^{\prime}$) of $(A B)$ is formed sharply on (E) and $\mathrm{AB}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

1) Specify the nature of the image $\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$.
2) Deduce that the image $\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)$ is inverted with respect to (AB).
3) The figure below shows (AB), ($\mathrm{A}^{\prime} \mathrm{B}^{\prime}$), the screen (E) and the optical axis $\mathrm{x}^{\prime} \mathrm{x}$ of the lens (L).

a) Redraw, with the same scale, the above figure.
b) Determine graphically the position of the optical center O of (L) and represent (L) on the figure.
c) Trace the emergent ray corresponding to a luminous ray issued from B parallel to the optical axis.
d) This emergent ray meets the optical axis at a particular point M . What does M represent for the lens (L)?
e) Determine graphically p and p^{\prime}.
f) Compare p and p^{\prime}. Deduce the relation between p and f .
g) Deduce the value of f.

Second exercise: Electric power (7 points)

The aim of this exercise is to compare the sum of the electric power consumed by a grouping of resistors with that consumed by the equivalent resistor of this grouping.
Consider the circuit of the adjacent figure.
Given: $\mathrm{R}_{1}=60 \Omega ; \mathrm{R}_{2}=30 \Omega ; \mathrm{R}_{3}=20 \Omega ; \mathrm{I}_{1}=1 \mathrm{~A}$.

I- Power consumed by the grouping

1) Calculate the voltage $U_{A M}$ across the terminals of R_{1}.
2) Show that the current carried by R_{2} is $I_{2}=2 \mathrm{~A}$.
3) Deduce the current I carried by R_{3}.
4) Calculate the electric power consumed by each of the three resistors.
5) Deduce the total electric power $P_{\text {total }}$ consumed by the three resistors.

II- Power consumed by the equivalent resistor

1) Calculate the resistance R^{\prime} of the resistor equivalent to R_{1} and R_{2}.
2) Show that the resistance equivalent to R^{\prime} and R_{3} is $R_{e}=40 \Omega$.
3) Calculate the electric power P_{e} consumed by R_{e}.

III- Comparison of electric powers

Compare $\mathrm{P}_{\text {total }}$ and P_{e}.

Third exercise: Gravitational field strength on the Moon (6 points)

The aim of this exercise is to verify experimentally the relation between the values of the gravitational field strength g_{M} on the Moon's surface and the gravitational field strength g on the Earth's surface. For this, we consider a spring (R) of stiffness $k=50 \mathrm{~N} / \mathrm{m}$ and a solid (S) of mass M.

Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.
First experiment:
On the Earth's surface, we fix the extremity O of (R) to a support and we suspend the solid (S) to its free extremity A.
At equilibrium, the elongation of the spring (R) is $\Delta \ell_{1}=12 \mathrm{~cm}$.
(S) is submitted to two forces.

1) Give the name of each force.
2) Write the vector relation between these two forces.
3) Determine the magnitude of each force.
4) Deduce that $\mathrm{M}=0.6 \mathrm{~kg}$.

Second experiment:

The same experiment is performed on the Moon's surface. At equilibrium, the elongation of (R) is $\Delta \ell_{2}=2 \mathrm{~cm}$.

1) Determine the new magnitude of each of the two forces acting on (S).
2) Knowing that the mass of (S) remains the same, deduce the value of g_{M}.
3) Verify that $\mathrm{g}_{\mathrm{M}}=\frac{1}{6} \mathrm{~g}$.

Second exercise (7 points)

Part of the Q	Answer	Mark
I. 1)	$\mathrm{U}_{\mathrm{AM}}=\mathrm{R}_{1} \cdot \mathrm{I}_{1}=60 \times 1=60 \mathrm{~V}$	$\mathbf{1}$
I.2)	$\mathrm{U}_{\mathrm{AM}}=\mathrm{R}_{2 .} \mathrm{I}_{2} \Rightarrow \mathrm{I}_{2}=\frac{\mathrm{U}_{\mathrm{AM}}}{\mathrm{R}_{2}}=\frac{60}{30}=2 \mathrm{~A}$	$\mathbf{0 . 5}$
I.3)	Law of addition of currents: $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \Rightarrow \mathrm{I}=3 \mathrm{~A}$	$\mathbf{0 . 5}$
I.4)	$\mathrm{P}_{1}=\mathrm{R}_{1} \cdot \mathrm{I}_{1}{ }^{2}=60.1^{2}=60 \mathrm{~W}$ $\mathrm{P}_{2}=\mathrm{R}_{2} \mathrm{I}_{2}{ }^{2}=30 \times 2^{2}=120 \mathrm{~W}$ $\mathrm{P}_{3}=\mathrm{R}_{3} \mathrm{I}_{3}{ }^{2}=20 \times 3^{2}=180 \mathrm{~W}$	$\mathbf{1 . 5}$
I.5)	$\mathrm{P}_{\text {total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}=360 \mathrm{~W}$	$\mathbf{0 . 7 5}$
II. 1)	$\frac{1}{\mathrm{R}^{\prime}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \Rightarrow \mathrm{R}^{\prime}=\frac{60 \times 30}{60+30}=20 \Omega$	$\mathbf{1}$
II.2)	$\mathrm{Re}=\mathrm{R}^{\prime}+\mathrm{R}_{3} \Rightarrow \mathrm{Re}=40 \Omega$	$\mathbf{0 . 5}$
II.3)	$\mathrm{Pe}=\mathrm{Re}^{2} \mathrm{I}^{2}=40 \times 3^{2}=360 \mathrm{~W}$	$\mathbf{0 . 7 5}$
II.4)	$\mathrm{Pe}=\mathrm{P}_{\text {total }}$	$\mathbf{0 . 5}$

Third exercise (6 points)

Part of the \mathbf{Q}	Answer	Mark
I. 1	\vec{W} : weight of (S) $\overrightarrow{\mathrm{T}}$: tension of the spring	0.5
I. 2	$\vec{W}+\vec{T}=\overrightarrow{0}$	0.5
I. 3	$\mathrm{T}=\mathrm{k} . \Delta \ell_{1} \quad \text { (Hooke's law) } \Rightarrow \mathrm{T}=50 \times 0.12=6 \mathrm{~N}$ since the system at equilibrium $\mathrm{W}=\mathrm{T}=6 \mathrm{~N}$	1.5
I. 4	$\mathrm{W}=\mathrm{M} . \mathrm{g} \quad \Rightarrow \mathrm{M}=0.6 \mathrm{~kg}$	1
II. 1	$\mathrm{T}^{\prime}=\mathrm{k} \cdot \Delta \ell_{2}=1 \mathrm{~N} \quad \Rightarrow \quad \mathrm{~W}^{\prime}=\mathrm{T}^{\prime}=1 \mathrm{~N}$	1
II. 2	$\mathrm{W}^{\prime}=\mathrm{M} . \mathrm{g}_{\mathrm{M}}$ thus $\mathrm{g}_{\mathrm{M}}=1.66 \mathrm{~N} / \mathrm{kg}$	0.5
II. 3	$\frac{\mathrm{g}}{6}=1.66 \text { then } \mathrm{g}_{\mathrm{M}}=\frac{\mathrm{g}}{6}$	1

