This exam is formed of three obligatory exercises in two pages

 Non- programmable calculators are allowed.
First exercise: focal length of a converging lens (7 points)

The aim of this exercise is to determine the focal length f_{1} of a converging lens $\left(L_{1}\right)$. For this, we consider an object ($A B$) of size $A B=4 \mathrm{~cm}$, a screen (E), the lens $\left(L_{1}\right)$ anda set of converging lenses of known focal lengths.
I- We place $(A B)$ perpendicularly to the optical axis of $\left(\mathrm{L}_{1}\right)$, A being on the optical axis at 60 cm from $\left(\mathrm{L}_{1}\right)$. The image $\left(A_{1} B_{1}\right)$ of $(A B)$ is obtained on the screen (E) as shown in figure 1 .

1) Redraw, with the same scale,the above figure.

Figure 1
2) The ray (BO) emerges from $\left(\mathrm{L}_{1}\right)$ without deviation. Justify.
3) a)Specify the nature of the image $\left(A_{1} B_{1}\right)$.
b) Give the size of $\left(\mathrm{A}_{1} \mathrm{~B}_{1}\right)$.
c) Determine the distance d_{1} between $\left(L_{1}\right)$ and $\left(A_{1} B_{1}\right)$.
4)a) Using a particular ray, determine the position of theimage focus F_{1}^{\prime} of $\left(\mathrm{L}_{1}\right)$.
b)Deduce that $f_{1}=20 \mathrm{~cm}$.

II- We perform the preceding experiment again by replacing (L_{1}) successively by each of the converging lenses of the given set. For each lens we determine the distance d between the lens and the image of $(A B)$. The curve of figure 2 represents the variation of d as a function of the focal length f knowing that the object (AB) being always in the preceding position.

Usingthe graph of figure 2:

1) Indicate whether d increases or decreases when f increases from 10 cmto 40 cm . Justify your answer by choosing two points from the curve.
2) Determine again the focal length f_{1} of $\left(L_{1}\right)$.

Figure 2

Second exercise: resistance of a voltmeter (7 points)

The aim of this exercise is to show that the resistance of a voltmeter is very large. For this we consider the series circuit that is represented in figure 1 which is formed of:

- a generator (G) maintaining across its terminals a constant voltage $\mathrm{U}_{\mathrm{PN}}=12 \mathrm{~V}$;
- an ammeter (A) of negligible resistance;
- two resistors $\left(\mathrm{R}_{1}\right)$ and $\left(\mathrm{R}_{2}\right)$ of resistances $\mathrm{R}_{1}=10 \Omega$ and $\mathrm{R}_{2}=20 \Omega$ respectively;

Figure1

- A switch (k).

The switch k is closed.

1) The voltage $U_{P B}$ across (A) iszero. Justify.
2) The voltage $U_{D N}$ across (K) iszero. Justify.
3) Deduce that the voltage $U_{P N}=U_{B D}$.
4) Calculate the equivalent resistance $R_{e q}$ of $\left(R_{1}\right)$ and $\left(R_{2}\right)$.
5) Calculate the current flowing in the circuit.
6) Show that the voltage $\mathrm{U}_{\mathrm{CD}}=8 \mathrm{~V}$.
7) We connect, between C and D, a voltmeter (V) that can be considered as a resistor of resistance R as shown in figure 2 . The current flowing in the

Figure 2 voltmeter is $\mathrm{I}^{\prime}=0.01 \mathrm{~mA}$.
a) Knowing that the voltage U_{CD} remains 8 V.Calculate the resistance R of the voltmeter.
b) Deduce that the calculated value of R satisfies the aim ofthis exercise.

Third exercise: reaction of the bottom of a container (6 points)

The aim of this exercise is to determine the magnitude of the force exerted by the bottom of acontainercontaining water on a sphere (S) totally immersed in water. The massof (S) is $\mathrm{M}=0.5 \mathrm{~kg}$ and its volume is
$\mathrm{V}=2 \times 10^{-4} \mathrm{~m}^{3}$.
Given: density of water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$;
gravitational field strength is $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.

I- Real weight of (S)

1) Calculate the magnitude of the weight \vec{W} of (S).
2) Indicate the direction and the line of action of \vec{W}.

II- Apparent weight of (S)

The sphere (S) is totally immersed in wateras shown in the adjacent figure.

1) a) Calculate the magnitude F of Archimedes up-thrust \vec{F} exerted by water on (S).

Horizontal table
b) Indicate the line of action and the direction of $\overrightarrow{\mathrm{F}}$.
2) Deduce the magnitude $W_{\text {app }}$ of the apparent weight of (S).

III- Force exerted by the bottom on (S)

The sphere exerts on the bottom of the container a force $\overrightarrow{\mathrm{R}}_{1}$ of magnitude $\mathrm{R}_{1}=3 \mathrm{~N}$.

Determine, using the principle of interaction, the magnitude of the force $\overrightarrow{\mathrm{R}}_{2}$ exerted by the bottom of the container on (S).

First exercise (7 points)

Part of the Q .	Answer	Mark
I. 1	Drawing	0.5
I. 2	Any ray passing through the optical center of the lens emerges without deviation.	0.5
I.3.a.	Real image. It is formed on the screen	1
I.3.b.	$\mathrm{A}_{1} \mathrm{~B}_{1}=2 \times 1=2 \mathrm{~cm}$	0.5
I.3.c.	$\mathrm{d}_{1}=3 \times 10=30 \mathrm{~cm}$	0.5
I.4.a.	Tracingof the ray We draw a ray issued from B parallel to the optical axis of $\left(\mathrm{L}_{1}\right)$. It emerges the lens through B_{1}. The point of intersection of the emergent ray and the optical axis of $\left(L_{1}\right)$ is the image focus F_{1} '.	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.5 \end{aligned}$
I.4.b.	$\mathrm{f}_{1}=\mathrm{OF}_{1}{ }^{\prime}=2 \times 10=20 \mathrm{~cm}$.	0.5
II. 1	As f increases the distance d increases For $\mathrm{f}=20 \mathrm{~cm}, \mathrm{~d}=30 \mathrm{~cm}$, For $\mathrm{f}=40 \mathrm{~cm} \mathrm{~d}=120 \mathrm{~cm}$	1
II. 2	For lens $\left(L_{1}\right)$, when $O A=60 \mathrm{~cm}, \mathrm{~d}_{1}=30 \mathrm{~cm}$ and graphically $\mathrm{f}_{1}=20 \mathrm{~cm}$.	1

Second exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
1)	Because the ammeter has negligible resistance	0.5
2)	Because the switch is closed. (or it is acting as a connecting wire)	0.5
3)	$\begin{aligned} & \mathrm{U}_{\mathrm{PN}}=\mathrm{U}_{\mathrm{PB}}+\mathrm{U}_{\mathrm{BD}}+\mathrm{U}_{\mathrm{DN}} \text { (law of addition of voltages) } \\ & \mathrm{U}_{\mathrm{PN}}=0+\mathrm{U}_{\mathrm{BD}}+0 \\ & \mathrm{U}_{\mathrm{PN}}=\mathrm{U}_{\mathrm{BD}} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$
4)	R_{1} and R_{2} are connected in series: $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}=10+20=30 \Omega$.	1
5)	Ohm's law : $\mathrm{U}_{\mathrm{PN}}=\mathrm{RI}, \quad \mathrm{I}=\frac{\mathrm{U}_{\mathrm{PN}}}{\mathrm{R}}=0.4 \mathrm{~A}$	1
6)	$\mathrm{U}_{\mathrm{CD}}=\mathrm{R}_{2} . \mathrm{I}=20 \times 0.4=8 \mathrm{~V}$	1
7.a)	$\mathrm{U}_{\mathrm{CD}}=\mathrm{RI}, \quad \mathrm{R}=\frac{\mathrm{U}_{\mathrm{CD}}}{\mathrm{I}}=8 \times 10^{5} \Omega\left(0.01 \mathrm{~mA}=10^{-5} \mathrm{~A}\right)$.	1.5
7.b)	$\mathrm{R}=8 \times 10^{5} \Omega$ which is very large.	0.5

Third exercise (6 points)

Part of the Q	Answer	Mark
I.1	$\mathrm{W}=\mathrm{Mg}$ $\mathrm{W}=0.5 \times 10=5 \mathrm{~N}$	$\mathbf{1}$
I.2	Line of action : vertical Direction $:$ downward	$\mathbf{1}$
II. 1.a	$\mathrm{F}=\rho_{\mathrm{L}} . \mathrm{V}_{\text {s. }}$ $\mathrm{F}=2 \mathrm{~N}$.	$\mathbf{1}$
II.1.b	Line of action : vertical Direction $:$ up ward	$\mathbf{1}$
II.2	$W_{a}=W-\mathrm{F}$ $W_{a}=3 \mathrm{~N}$	$\mathbf{1}$
III.	Principle of interaction $\vec{R}_{1}=-\vec{R}_{2}$ so $\mathrm{R}_{2}=\mathrm{R}_{1}=3 \mathrm{~N}$	$\mathbf{1}$

