نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

ارشادات عامة : - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (4 points)

The United Nations Organization has established in 2010 a statistical survey over the world population. The following table shows the result obtained by this study.

Year	1970	1980	1990	2000	2010
Rank of the year x_i	1	2	3	4	5
Population (in millions of persons) : y _i	3 023	4 438	5 290	6 115	6 908

- 1) Represent graphically the scatter plot of the points $(x_i; y_i)$.
- The percentage of increase of the world population between the years 2010 and 2013 is 3.47%. Calculate the population in 2013.
- 3) For each year, calculate $\ln y_i$ and complete the following table :

Year	1970	1980	1990	2000	2010
x _i	1	2	3	4	5
$z_i = \ln y_i$					

- 4) Determine by the least squares method, the equation of the regression line of z in terms of x.
- 5) Deduce from the preceding adjustment that the expression of the population y in terms of the rank

x, is under the form of : $y = Ee^{F}$ where E and F are two real numbers to be determined.

6) Estimate the world population in 2030?

II- (5 points)

Part A

Consider the sequence (u_n) defined as $u_0 = 900$ and, for every natural number n, $u_{n+1} = 0.6u_n + 200$.

- 1) Prove that the sequence (u_n) is neither arithmetic nor geometric.
- 2) Consider the sequence (v_n) defined, for every natural number n, as $v_n = u_n 500$.
 - a) Prove that (v_n) is a geometric sequence whose first term and common ratio are to be determined.
 - **b**) Prove that $u_n = 400 \times (0.6)^n + 500$.
 - c) Discuss the variations of the sequence (u_n) .
 - **d**) Determine the limit of the sequence (u_n) .

Part B

In a certain country, two companies A and B share the communications' market.

The clients subscribe, the first of January, with either A or B, with a one year contract of which they are free to chose again A or B

The company A holds 90% of the market and the company B, which has just launched 10% of it. We estimate that, each year, 20% of the clients of A change to B, while 20% of the clients of B change to A.

Consider a population which is represented by 1 000 clients in the year 2000. Thus 900 clients are registered in A and 100 clients are registered in B.

We want to study the evolution of this population in the coming years.

- 1) Verify that the company A counts 740 clients in 2001.
- 2) Calculate the number of clients of B in 2002.
- 3) Denote by a_n the number of clients of A in the year (2000 + n).
 - **a**) Establish that $a_{n+1} = 0.6a_n + 200$.
 - **b**) Using the result in **part A**, what can you expect for the evolution of the communication market in this country?

III- (4 points)

The seats of a movie theater are fully occupied. The proposed film is a replay of a blockbuster comedy.

In this theater, men represent 25% of the spectators, women represent $\frac{2}{5}$ of the spectators and the

remaining spectators are kids.

 $\frac{1}{5}$ of men and 30 % of women have already seen this movies before.

At the end of the show, one spectator is interviewed randomly.

Consider the following events :

H: « the interviewed spectator is a man »

F: « the interviewed spectator is a woman »

E : « the interviewed spectator is a kid »

V: « the interviewed spectator has already seen this movie before »

- 1) a) Express, using a sentence, the event $V \cap H$.
 - **b**) Calculate P(V/H) and deduce $P(V \cap H)$.
- 2) The probability of the event V is equal to 0,4.
 - a) Determine the probability that the interviewed spectator a kid who has already seen this movie before .
 - **b**) Determine the probability that the interviewed spectator who has already seen this movie before knowing that he is a kid.
- 3) Two spectators re randomly interviewed one after another with replacement . Denote by X the random variable equal to the number of spectators who have already seen this movie before .
 - **a**) Prove that P(X = 1) = 0.48.
 - **b**) Determine the probability distribution of X.
- 4) This replay was seen by 1000 spectators on a night, and we want to choose simultaneously three spectators for interview among these 1000 persons.
 - a) What is the probability of interviewing three women?
 - **b**) What is the probability of interviewing three persons who has never seen this movie before knowing that they are men?

IV- (8 points)

Part A

Consider the function f defined over $[0;+\infty[$ as $f(x) = x - 1 - \ln(x + 1)$ and denote by

(C) its representative curve in an orthonormal system (O, i, j).

1) Calculate f(1), f(7) and $\lim f(x)$.

 $x \rightarrow +\infty$

2) Prove that $f'(x) = \frac{x}{x+1}$. Deduce that f is strictly increasing and set up the table of variations of

the function f.

- 3) Write an equation of (T) the tangent to the curve (C) at the point of (C) with abscissa 1.
- 4) Prove that the equation f(x) = 0 has a unique solution α . Verify that 2.1 < α < 2.2.
- 5) Draw the tangent (T), and the curve (C).

Part B (In what follows take $\alpha = 2.15$)

An enterprise produces copybooks.

The function of the profit P, in millions of L.L, is given as P(x) = f(x).

Denote by x the quantity of produced copybooks (in thousands).

The functions C_T and R of the total cost and the revenue in millions of L.L, are represented in the given figure. (x ≥ 0)

- 1) Calculate the maximum loss of this enterprise.
- 2) Use the figure to :
 - a) Calculate the fixed cost of the enterprise.
 - **b)** Calculate the average cost of production of one copybook during the production of 4000 copybooks.
- We admit that the function R is defined as R(x) = ax.
 - **a**) Use the figure to prove that a = 2.
 - **b**) Deduce that 2000 L.L is the sale price of one copybook.
- 4) Prove that α is the solution of the equation $R(x) = C_T(x)$.

Deduce the minimum number of copybooks to be produced for the enterprise to realize a gain.

5) Prove that the function C_T is defined as $C_T(x) = x + 1 + \ln(x+1)$.

المادة: الرياضيات الشهادة: الثانوية العامة - فرع الاجتماع والاقتصاد	الهيئة الأكاديميّة المشتركة قسم : الرياضيات	6
نموذج رقم -2- المدة :		المركز البزيوي للبخوث والانمار

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

QI				Answ	ers				Mark
1	Scatter plo	ot							1
2	The popul	lation in 2013	is 7147 in	n millions o	of persons	then it is 7	147707600) persons	1.5
		Year	1970	1980	1990	2000	2010		
3		x _i	1	2	3	4	5	-	1
		$z_i = \ln y_i$	8.014	8.397	8.573	8.718	8.840		
4	z = 0.1973	3x + 7.9165		1	I	1	1		1/2
5	$y = e^{0.1973x + 7.9165} = e^{0.1973x} \times e^{7.9165} = 2742.156e^{0.1973x}$; E = 2742.156 and F = 0.1973					1.5			
6	x = 7 then	y = 10911.79	9944 in mi	llions of po	ersons ther	n it is 1091	1799440 p	persons	1.5

QII	Answers	Mark
	$u_1 = 740$; $u_2 = 644$;	
A1	$\mathbf{u}_2 - \mathbf{u}_1 \neq \mathbf{u}_3 - \mathbf{u}_2$	1
	$\mathbf{u}_2 / \mathbf{u}_1 \neq \mathbf{u}_3 / \mathbf{u}_2$	
A2a	The ratio = 0.6 and the first term is $v_0 = 400$	1
A2b	$u_n = 400 \times (0.6)^n + 500$	1/2
A2c	(u _n) is decreasing	1
A2d	The limit = 500	1/2
B1	The company A counts 740 clients in 2001	1/2

B2	The company B count 356 clients in 2002	1/2
B3	$a_{n+1} = 0.6a_n + 200$	1
B4	The number of clients of A decreases but remains more than 500 while the number of clients of B increases but remains less than 500 so A et B will never have the same number of clients.	1

QIII	Answers	Mark
1a	$V \cap H$ represents the interviewed spectator is a man who has seen this movie before at least once.	1/2
1b	$P(V/H) = \frac{1}{5}$; $P(V \cap H) = \frac{1}{20}$	1/2 1/2
2a	$P(V \cap E) = 0.23$	1/2
2b	$P(V/E) = \frac{23}{35}$	1/2
3a	P(X = 1) = 0.48	1
3b	We have proven $P(X = 1) = 0.48$; $P(X = 0) = 0.36$ and $P(X = 2) = 0.16$	1/2 1/2
4a	P(3F) = 0,063	1
4b	$P(3\overline{V}/H) = 0.51.$	1.5

QIV	Answers	Mark
A1	$f(1) = -0.69$; $f(7) = 3.9$; $\lim_{x \to +\infty} f(x) = +\infty$	1/4 1/4 1/2
A2	$f'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ so f is } \frac{x}{f'(x)} + \frac{+\infty}{f(x)}$ strictly increasing $f'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0 \text{ so f is } \frac{x}{f'(x)} + \frac{+\infty}{f(x)}$	1/2 1/2 1
A3	(T): $y = \frac{1}{2}x - \frac{1}{2} - \ln 2$	1
A4	Over $[0;+\infty[$ the function f is defined, continuous and strictly increasing, it passes from - to + so the equation $f(x) = 0$ admits unique solution. f(2.1) = -0.03 < 0 and $f(2.2) = 0.03 > 0$.	1/2 1/2

A5	$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	2
B1	P'(x) = 0; maximum loss = 1000000 L.L or by using the curve (C).	1
B2a	$C_{\rm T}(0) = 1$ in millions L.L thus 1000000 L.L	1/2
B2b	$C_T(4) = 6.609$ in millions L.L so 6609000 L.L The average cost of production of a copybook during the production of 4000 copybooks = 1652,25 L.L	1/2 1
B3a	R(1) = 2 then $a = 2$	1/2
B3b	$R(x) = \frac{(\text{sale.price}) \times x \times 100}{1000000} = 2x \text{ ; sale price} = 2000 \text{ L.L}$	1.5
B4	$R(x) = C_T(x)$ gives $P(x) = 0$ so f $(x) = 0$ thus $x = \alpha = 2.15$. Hence 2150 copybooks. Therefore 2151 copybooks is the minimum number of copybooks to sell for the enterprise to realize a gain	1.5
B5	$C_{T}(x) = R(x) - P(x); C_{T}(x) = x + 1 + \ln(x + 1)$	1/2