المادة: الفيزياء الشهادة: الثانوية العامَة	الهيئة الأكاديميّة المشتركة	16
الفرع: علوم الحياة	قسم: العلوم	
نموذج رقم 2		الكزمانة بدي للبخديث بالإزار
المدة: ساعتان		المركز اليروقي بتوك وكالمماد
201 معتد مردما المذاح المطقرية)	بقيالدرمسير والتوميد في المعتل العام الدراسي 2016	

ى 2010-/ 2011 و• المرجع: دورة سنة 2012 الإستثنائية الإكمالية (معدّلة بحسب توصيف مادة الفيزياء للعام الدراسي 2016-2017)

This test includes three mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 (7 points)

Effect of the frequency on the current

The circuit, represented in the adjacent document (Doc 1), includes in series:

- A generator (G) delivering, across its terminals, an alternating voltage, $u_{AF} = u_G = 8 \sin(2\pi ft)$ (S.I.);
- A capacitor of capacitance $C = 0.265 \mu F$;
- A coil of inductance L = 31.833 mH and of negligible resistance;
- A resistor of resistance $R = 100 \Omega$.

The circuit carries then an alternating current i of expression:

 $i = I_m \sin (2\pi ft + \phi)$ (S.I.).

The aim of this exercise is to study the effect of the frequency f of u_G on the amplitude I_m of i and on the phase difference φ between i and u_G.

An oscilloscope, connected as shown in the document (Doc.1), is used to display the voltages u_G and $u_{\rm R} = u_{\rm DF}$. The vertical sensitivity, of both channels, is the same in all the experiments: $S_{\rm V} = 2 {\rm V/div}$.

1^{rst} experiment 1)

We set the frequency at $f = f_1 = 1500$ Hz. We observe on the screen of the oscilloscope the waveforms displayed in the adjacent document (Doc.2).

- **1-1**) Identify the waveforms (a) and (b).
- **1-2**) Determine the phase difference φ_1 between i and u_G .
- **1-3**) Calculate the amplitude I_{1m} of the current i.

2) 2nd experiment.

The frequency f is increased to $f = f_0$, f_0 being the proper frequency of the (RLC) series circuit.

We notice that the waveforms obtained coincide. The circuit is thus the seat of a certain phenomenon.

- **2-1**) Give the name of the physical phenomenon obtained.
- **2-2**) Give the value of the new phase difference φ_2 between i and u_G .
- **2-3**) Deduce the value of f_0 and the new amplitude I_{2m} of i.

3rd experiment 3)

- **3-1**) We measure I_m and φ for three other values of f; the results are tabulated as shown in the adjacent table (Doc 3). Complete this table.
- **3-2**) Referring to the table (Doc 3), draw the graph representing the variation of I_m as a function of f.
- **3-3)** Conclude about the effect of f on the amplitude I_m of i and on the sign of the phase difference φ between i and u_G.

f (Hz)	1000	1500	f ₀ =?	2220	2500	
$I_{m}(A)$	0.02			0.04	0.03	
φ (rd)	1.33			-1.04	-1.2	
(Doc 3)						

Exercise 2 (7 points)

Energies and collision

A particle (S_1) , of mass $m_1 = 200$ g, is released from rest at the point A on a track ABOE, found in a vertical plane, as shown in the adjacent document (Doc 4).

The part AB, very smooth, along which we can neglect the force of friction, has the shape of a circular arc of radius h_A , and the part BO, a rough part, along which the force of friction \vec{f} is supposed constant,

is a rectilinear and horizontal path with BO = 1 m.

The particle (S₁) reaches the point B with the speed $v_{1B} = 4$ m/s, then it covers the track BO to reach the point O with the speed $v_{1O} = 2$ m/s.

At O, (S_1) enters into a head-on collision with a particle (S_2) , of mass $m_2 = 400$ g, initially at rest and connected to the end of a horizontal spring of stiffness k = 100 N/m whose other end is fixed at E. Take the horizontal plane containing BO as a gravitational potential energy reference level. Take g = 10 m/s².

- 1) Conservation and non-conservation of the mechanical energy.
 - **1-1**) Applying the principle of conservation of the mechanical energy of the system $[(S_1), Earth]$, determine h_A .
 - **1-2**) Determine the work done by the force of friction \vec{f} along BO.
 - **1-3**) Deduce the magnitude f of the force of friction \vec{f} along BO.
- 2) Elastic collision.

The collision between the particles (S_1) and (S_2) is perfectly elastic. All the velocities, before and after the collision, are along the horizontal axis x'Ox.

- **2-1**) Determine the speed v'_{10} of (S_1) and v'_{20} of (S_2) just after the collision.
- **2-2**) Neglecting the force of friction between (S_2) and the track, just after the collision, calculate the maximum compression $x_m = OD$ of the spring.
- **2-3**) In fact, the force of friction $\vec{f'}$ between (S₂) and the track, just after the collision, is not negligible and the maximum compression of the spring is $x'_m = OD' = 6.4$ cm.
 - **2-3-1**) Determine the decrease in the mechanical energy of the system [(S₂), Earth, spring], between O and D'.
 - **2-3-2**) In what form of energy does this decrease appear?

Exercise 3 (6 points) Radioa

Radioactivity of Thallium

The radioactive isotope of Thallium ${}^{207}_{81}$ Tl is a β^- emitter, of radioactive period 135 days. The disintegration of a Thallium 207 nucleus produces a daughter nucleus, the lead nucleus ${}^{A}_{Z}$ Pb.The kinetic energy of the emitted β^- particle is KE (β^-) = 0.70 MeV. This disintegration is accompanied by the emission of a gamma radiation (γ) of energy E(γ), and an antineutrino ${}^{0}_{0}\overline{v}$ of energy E (${}^{0}_{0}\overline{v}$) = 0.10 MeV.

```
The equation of disintegration is given by: {}^{207}_{81}\text{Tl} \longrightarrow {}^{A}_{Z}\text{Pb} + {}^{0}_{-1}\text{e} + {}^{0}_{0}\overline{v} + \gamma

Given:

m ({}^{A}_{Z}\text{Pb}) = 206.9759 u; m ({}^{207}_{81}\text{Tl}) = 206.9775 u; m ({}^{-1}_{-1}\text{e}) = 5.486×10<sup>-4</sup> u;

1 u = 931.5 MeV/c<sup>2</sup>; 1 eV = 1.6×10<sup>-19</sup> J; N<sub>A</sub> = 6.023×10<sup>23</sup>.
```

- 1)
- **1-1**) Calculate A and Z specifying the used laws.
- **1-2**) Define the radioactive period of a substance.
- **1-3**) Calculate the decay constant λ of Thallium 207.
- 1-4) Interpret the emission of the γ radiation.
- 1-5) Knowing that the Thallium nucleus is initially at rest and the kinetic energy of the daughter nucleus is negligible, determine E (γ), the energy of the emitted photon γ .
- 2) In an energetic study concerning the β^- emission by a sample of 1 g of Thallium freshly prepared, an experimenter, during the first day of disintegration, detects the emitted electrons to determine the maximum average power produced by these electrons.
 - **2-1**) Calculate the initial number of Thallium nuclei contained in this sample.
 - **2-2**) Determine, in Bq, the initial value of the activity of this radioactive sample.
 - **2-3**) During the first day:
 - **2-3-1**) Calculate the number of the emitted electrons.
 - **2-3-2**) Determine, in joules, the energy of the emitted β -particles.
 - **2-3-3)** Deduce the average power of the emitted electrons.

المادة: الفيزياء الشهادة: الثانوية العامّة	الهيئة الأكاديميّة المشتركة	16
الفرع: علوم الحياة	قسم: العلوم	
نموذج رقم 2 المدّة: ساعتان		المركز النزبوي للبخوث والانماد

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Exercise 1 (7 points) Effect of the frequency on the intensity of current

Question	Answer					Mark	
1-1	$U_{mG} > U_{mR}$	with the sam	e vertical so	ensitivity, (a)	represents	u _G and (b) represents u _R .	1/2
1-2	$ \phi_1 = \frac{2\pi \times 0.8}{2\pi \times 0.8}$	$=\frac{\pi}{-}$ rd					1⁄2
	But the way	eform (b) le	ads in phas	e the wavefo	orm (a) so i	up (or i) leads up because	
	up reaches t	he maximur	n value bef	ore us then	m(u), so t		
	u _R reaches u			ore uG, then	$\psi_1 - \pm \frac{1}{4}$	l.	1/2
1-3	$I_{1m} = U_{Rm}/R$	= 0.056 A					1/2
2-1	Current reso	onance.					1/4
2-2	$\varphi_2 = 0$			1			1/4
2-3	$LC\omega^2 = 1 W$	ith $\omega = 2\pi f_0$, then $f_0 = \frac{1}{2}$	$\frac{1}{\pi \sqrt{16}} = 1733$	Hz.		1/2
	In case of cu	arrent resona	ance, the ci	rcuit behave	s as a pure 1	resistor. So:	1/2
	$I_{2m} = U_{mG}/R$	k = 8/100 = 0).08Å		1		1/2
3-1							
	f (Hz)	1000	1500	$f_0 = 1733$	2220	2500	
	$I_{m}(A)$	0.02	0.056	0.08	0.04	0.03	1⁄2
	φ (rd)	1.33	0.785	0	-1.04	-1.2	
3-2	0.1 Tim (/	۵)					
		ער					
	0.09						
	0.08						
	0.00			()			
	0.07		/	- \		_	
	0.06		/				
	0.05						
	0.05						
	0.04		/			_	1
	0.01		1				1
	0.03						
			1				
	0.02						
	0.01						
	0.01				f /Ц-7	\top	
	0				1 (112	-) ≯	
	Ŭ Ø	10	00	2000	30	000	
3-3	When f increases, for $f < f_0$, I_m increases and i leads u_G in phase; $\phi > 0$.				1/2		
	For $f = f_0$, I_m takes a maximum value and i and u_G are in phase; $\varphi = 0$.				1/2		
	When f increases, for $f > f_0$, I_m decreases and i lags behind u_G in phase; $\phi < 0$.				1⁄2		

Exercise 2	(7 points) Energies and collisions	
Question	Answer	Mark
1-1	ME(A) = ME(B)	
	$PE_g(A) + KE(A) = PE_g(B) + KE(B)$	
	$m_1gh_A + 0 = 0 + \frac{1}{2}m_1(v_{1B})^2$	1⁄2
	$h = \frac{1}{2}(v_{1B})^2$	
	$n_A - \frac{g}{g}$	
	$\frac{1}{2}(4)^2$	
	$n_A = \frac{10}{10}$	3/.
	$h_{\rm A} = 0.8 \ {\rm m}$	9/4
1-2	Explanation:	
	$ME(O) - ME(B) = W(f)_{B \to O}$	
	$PE_{g}(O) + KE(O) - PE_{g}(B) - KE(B) = W(\vec{f})_{B \to O}$	
	$0 + \frac{1}{2}m_1(v_{10})^2 - 0 - \frac{1}{2}m_1(v_{1B})^2 = W(\vec{f})_{B \to 0}$	1/2
	$W(\vec{f})_{B \to O} = \frac{1}{2} \times 0.2 \times (2)^2 - 0 - \frac{1}{2} \times 0.2 \times (4)^2$	72
	$W(\vec{f})_{B \to O} = -1.2 \text{ J}$	3⁄4
1-3	$W(\vec{f})_{B \to O} = \vec{f}, \vec{BO} = -f \times BO$	
	$f = W(\vec{f})_{B \to 0}$	
	$I = -\frac{BO}{12}$	
	$f = -\frac{-1.2}{1} = 1.2 \text{ N}$	1
2-1	During the collision, the linear momentum of the system $[(S_1),(S_2)]$ is conserved:	
	$\vec{p}_{before} = \vec{p}_{after}$	
	In algebraic values along the positive direction:	
	$m_1v_{10} + 0 = m_1v'_{10} + m_2v'_{20}$	
	$m_1(v_{10} - v_{10}) = m_2 v_{20}$ (equation 1)	
	The collision being elastic, then the kinetic energy of the system is conserved:	
	$KE_{before} = KE_{effer}$	
	$\frac{1}{2}m_1(y_{10})^2 + 0 = \frac{1}{2}m_1(y_{10})^2 + \frac{1}{2}m_2(y_{20})^2$	
	$m_1(v_{10} - v'_{10})(v_{10} + v'_{10}) = m_2(v'_{20})^2$ (equation 2)	
	Using both equations, (equation 2) and (equation 1), we get:	
	$v_{10} + v'_{10} = v'_{20}$ (equation 3)	
	Using the equations, (equation 1) and (equation 3), we get : $(m_1 - m_2)$	
	$V'_{10} = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) V_{10}$	1
	·1 ·2/	1
	Which gives: $v'_{10} = -2/3 = -0.67$ m/s	
	then replace in (equation 3), we get: $v'_{20} = 4/3 = 1.33$ m/s.	1⁄2

2.2	The model is a second of the contains $[(0) - contains - Fourth]$ is a second of	
2-2	The mechanical energy of the system $[(S_2)$, spring, Earth is conserved.	
	ME(O) = ME(D)	
	$PE_g(O) + PE_e(O) + KE(O) = PE_g(D) + PE_e(D) + KE(D)$	
	$0 + 0 + \frac{1}{2}m_2(v_{20})^2 = 0 + \frac{1}{2}k(x_m)^2 + 0$	1/2
	$m_2(v_{2O})^2 = k(x_m)^2$	
	$x_{\rm m} = (v'_{\rm 2O}) \sqrt{\frac{m_2}{k}}$	
	$x_{\rm m} = \frac{4}{3} \sqrt{\frac{0.4}{100}}$	
	$x_m = OD = 0.084 m = 8.4 cm$	1⁄2
2-3-1	The decrease in the mechanical energy of the system [(S ₂), Earth, spring] is equal to:	
	$\Delta ME = \frac{1}{2}m_2(v_{20})^2 - \frac{1}{2}k(x_m)^2 = \frac{1}{2} \times 0.4 \times (\frac{4}{3})^2 - \frac{1}{2} \times 100 \times (0.064)^2 = 0.15 \text{ J}$	1⁄2
2-3-2	This decrease appears in the form of thermal energy (heat).	1⁄2

Exercise 3 (6 points) Radioactivity of Thallium

Question	Answer	Mark
1-1	By applying Soddy's laws:	1⁄4
	Conservation of the mass number: $207 = A + 0 + 0 \implies A = 207$	1⁄4
	Conservation of the charge number: $81 = Z - 1 + 0 \implies Z = 82$	1⁄4
1-2	The radioactive period of a substance is the time interval at the end of which the	
	activity becomes equal to half of its initial value.	1⁄2
1-3	$\ln 2 = 0.693$	
	$\Lambda = \frac{1}{T} = \frac{1}{135 \times 24 \times 3600} = 5.94 \times 10^{-5} \text{ s}^{-1}$	1⁄2
1-4	The Lead daughter nucleus, produced by the decay, is obtained in an excited state;	
	it will last, in this state, for a short time, after which, it undergoes a downward	
	transition and this de-excitation is accompanied by the emission of a γ radiation.	1⁄4
1-5	The law of conservation of total energy:	
	$m(Tl).c^{2} = m(Pb).c^{2} + m(e^{-}).c^{2} + KE(e^{-}) + E(\gamma) + E(_{0}^{0}\overline{v})$	1⁄2
	so $\Delta m.c^2 = (206.9775 - 206.9759 - 5.486 \times 10^{-4}) \times 931.5$	
	and $\Delta m.c^2 = 0.70 + E(\gamma) + 0.10$	
	then: $E(\gamma) = 0.97938 - 0.80 = 0.179 \text{ MeV}$	1⁄2
2-1	$\frac{m}{M} = \frac{N_0}{N_A}$ then N ₀ = 2.9096 × 10 ²¹ nuclei.	1⁄2
2-2	$A_0 = \lambda N_0 = 5.94 \times 10^{-8} \times 2.9096 \times 10^{21} = 1.7283 \times 10^{14} \text{ Bq}$	1⁄2
2-3-1	The number of nuclei of thallium remaining at the end of one day:	
	$N_1 = N_0 e^{-\lambda t} = 2.9096 \times 10^{21} e^{(-5.94 \times 10^{-8} \times 24 \times 3600)} = 2.8947 \times 10^{21}$ nuclei	1⁄2
	The number of disintegrated nuclei is: $N = N_0 - N_1 = 1.49 \times 10^{19}$ nuclei	
	But the number of emitted electrons is equal to the number of disintegrated nuclei	
	Then: $N_{e-} = 1.49 \times 10^{19}$ electrons	1⁄2
2-3-2	$E = N_{e^-} \times KE(\beta^-) = \overline{1.49 \times 10^{19} \times 0.70} = 1.043 \times 10^{19} \text{ MeV} = 1.668 \times 10^6 \text{ J}$	1⁄2
2-3-3	$P_{av} = E/\Delta t = 1.668 \times 10^{6}/(24 \times 3600) = 19.3 \text{ W}$	1/2