

نموذج مسابقة (يراعي تعليق الاروس والتوصيف المعدّل للعام الاراسي 2016-2017 وحتى صدور المناهج المطوّرة) المرجع: دورة سنة 2012 الإستثنائية الإكمالية (معدّلة بحسب توصيفّ مادة الفيزياء للعام الدر اسي 2016-2017)

This test includes three mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 (7 points) Effect of the frequency on the current

The circuit, represented in the adjacent document (Doc 1), includes in series:

- A generator (G) delivering, across its terminals, an alternating voltage, $\mathrm{u}_{\mathrm{AF}}=\mathrm{u}_{\mathrm{G}}=8 \sin (2 \pi \mathrm{ft}) \quad$ (S.I.);
- A capacitor of capacitance $\mathrm{C}=0.265 \mu \mathrm{~F}$;
- A coil of inductance $\mathrm{L}=31.833 \mathrm{mH}$ and of negligible resistance;
- A resistor of resistance $\mathrm{R}=100 \Omega$.

The circuit carries then an alternating current i of expression:
$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin (2 \pi \mathrm{ft}+\varphi) \quad$ (S.I.).

The aim of this exercise is to study the effect of the frequency f of u_{G} on the amplitude I_{m} of i and on the phase difference φ between i and u_{G}.
An oscilloscope, connected as shown in the document (Doc.1), is used to display the voltages u_{G} and $u_{R}=u_{D F}$. The vertical sensitivity, of both channels, is the same in all the experiments: $S v=2 \mathrm{~V} / \mathrm{div}$.

1) $\quad \mathbf{1}^{\text {rst }}$ experiment

We set the frequency at $\mathrm{f}=\mathrm{f}_{1}=1500 \mathrm{~Hz}$. We observe on the screen of the oscilloscope the waveforms displayed in the adjacent document (Doc.2).
1-1) Identify the waveforms (a) and (b).
1-2) Determine the phase difference φ_{1} between i and u_{G}.
1-3) Calculate the amplitude $\mathrm{I}_{1 \mathrm{~m}}$ of the current i.
2) $2^{\text {nd }}$ experiment.

The frequency f is increased to $f=f_{0}, f_{0}$ being the proper frequency of the (RLC) series circuit.
We notice that the waveforms obtained coincide. The circuit is thus the seat of a certain phenomenon.
2-1) Give the name of the physical phenomenon obtained.

(Doc 2)

2-2) Give the value of the new phase difference φ_{2} between i and u_{G}.
2-3) Deduce the value of f_{0} and the new amplitude $I_{2 m}$ of i.
3) $3^{\text {rd }}$ experiment

3-1) We measure I_{m} and φ for three other values of f; the results are tabulated as shown in the adjacent table (Doc 3). Complete this table.
3-2) Referring to the table (Doc 3), draw the graph representing the variation of I_{m} as a function of f.

$\mathrm{f}(\mathrm{Hz})$	1000	1500	$\mathrm{f}_{0}=?$	2220	2500
$\mathrm{I}_{\mathrm{m}}(\mathrm{A})$	0.02			0.04	0.03
$\varphi(\mathrm{rd})$	1.33			-1.04	-1.2

(Doc 3)

3-3) Conclude about the effect of f on the amplitude I_{m} of i and on the sign of the phase difference φ between i and u_{G}.

Energies and collision

A particle $\left(\mathrm{S}_{1}\right)$, of mass $\mathrm{m}_{1}=200 \mathrm{~g}$, is released from rest at the point A on a track ABOE, found in a vertical plane, as shown in the adjacent document (Doc 4).
The part AB, very smooth, along which we can neglect the force of friction, has the shape of a circular arc of radius h_{A}, and the part BO , a rough part, along which the force of friction \vec{f} is supposed constant,
 is a rectilinear and horizontal path with $\mathrm{BO}=1 \mathrm{~m}$.
The particle $\left(S_{1}\right)$ reaches the point B with the speed $v_{1 B}=4 \mathrm{~m} / \mathrm{s}$, then it covers the track BO to reach the point O with the speed $\mathrm{v}_{10}=2 \mathrm{~m} / \mathrm{s}$.
At $\mathrm{O},\left(\mathrm{S}_{1}\right)$ enters into a head-on collision with a particle $\left(\mathrm{S}_{2}\right)$, of mass $\mathrm{m}_{2}=400 \mathrm{~g}$, initially at rest and connected to the end of a horizontal spring of stiffness $k=100 \mathrm{~N} / \mathrm{m}$ whose other end is fixed at E .
Take the horizontal plane containing BO as a gravitational potential energy reference level.
Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

1) Conservation and non-conservation of the mechanical energy.

1-1) Applying the principle of conservation of the mechanical energy of the system [($\left.S_{1}\right)$, Earth], determine h_{A}.
1-2) Determine the work done by the force of friction \vec{f} along BO.
1-3) Deduce the magnitude f of the force of friction \vec{f} along BO.
2) Elastic collision.

The collision between the particles $\left(\mathrm{S}_{1}\right)$ and $\left(\mathrm{S}_{2}\right)$ is perfectly elastic. All the velocities, before and after the collision, are along the horizontal axis $\mathrm{x}^{\prime} \mathrm{Ox}$.
2-1) Determine the speed $\mathrm{v}^{\prime} 10$ of $\left(\mathrm{S}_{1}\right)$ and $\mathrm{v}^{\prime}{ }_{20}$ of $\left(\mathrm{S}_{2}\right)$ just after the collision.
2-2) Neglecting the force of friction between $\left(\mathrm{S}_{2}\right)$ and the track, just after the collision, calculate the maximum compression $\mathrm{x}_{\mathrm{m}}=\mathrm{OD}$ of the spring.
2-3) In fact, the force of friction $\overrightarrow{\mathrm{f}^{\prime}}$ between $\left(\mathrm{S}_{2}\right)$ and the track, just after the collision, is not negligible and the maximum compression of the spring is $\mathrm{x}^{\prime}{ }_{\mathrm{m}}=\mathrm{OD}^{\prime}=6.4 \mathrm{~cm}$.
2-3-1) Determine the decrease in the mechanical energy of the system [$\left(\mathrm{S}_{2}\right)$, Earth, spring], between O and D^{\prime}.
2-3-2) In what form of energy does this decrease appear?

Exercise 3 (6 points) Radioactivity of Thallium

The radioactive isotope of Thallium ${ }_{81}^{207} \mathrm{Tl}$ is a β^{-}emitter, of radioactive period 135 days. The disintegration of a Thallium 207 nucleus produces a daughter nucleus, the lead nucleus ${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{Pb}$. The kinetic energy of the emitted β^{-}particle is $\operatorname{KE}\left(\beta^{-}\right)=0.70 \mathrm{MeV}$. This disintegration is accompanied by the emission of a gamma radiation (γ) of energy $\mathrm{E}(\gamma)$, and an antineutrino ${ }_{0}^{0} \overline{\mathrm{v}}$ of energy $\mathrm{E}\left({ }_{0}^{0} \overline{\mathrm{v}}\right)=0.10 \mathrm{MeV}$.
The equation of disintegration is given by: ${ }_{81}^{207} \mathrm{Tl} \longrightarrow{ }_{\mathrm{Z}} \mathrm{Pb}+{ }_{-1}^{0} \mathrm{e}+{ }_{0}^{0} \overline{\mathrm{v}}+\gamma$
Given:
$\mathrm{m}\left({ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{Pb}\right)=206.9759 \mathrm{u} ; \quad \mathrm{m}\left({ }_{81}^{207} \mathrm{Tl}\right)=206.9775 \mathrm{u} ; \quad \mathrm{m}\left({ }_{-1}^{0} \mathrm{e}\right)=5.486 \times 10^{-4} \mathrm{u}$;
$1 \mathrm{u}=931.5 \mathrm{MeV} / \mathrm{c}^{2}$;
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$;
$\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$.
1)

1-1) Calculate A and Z specifying the used laws.
1-2) Define the radioactive period of a substance.
1-3) Calculate the decay constant λ of Thallium 207.
1-4) Interpret the emission of the γ radiation.
1-5) Knowing that the Thallium nucleus is initially at rest and the kinetic energy of the daughter nucleus is negligible, determine $\mathrm{E}(\gamma)$, the energy of the emitted photon γ.
2) In an energetic study concerning the β^{-}emission by a sample of 1 g of Thallium freshly prepared, an experimenter, during the first day of disintegration, detects the emitted electrons to determine the maximum average power produced by these electrons.
2-1) Calculate the initial number of Thallium nuclei contained in this sample.
2-2) Determine, in Bq, the initial value of the activity of this radioactive sample.
2-3) During the first day:
2-3-1) Calculate the number of the emitted electrons.
2-3-2) Determine, in joules, the energy of the emitted β^{-}particles.
2-3-3) Deduce the average power of the emitted electrons.

المادة: الفيزياء الثشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 2 المدّة: ساعتّان	الهيئة الأكاديميّة المشتركة قسم: العلوم	

أسس التصحيح (تراعي تعليق اللاروس واللتوصيف المعدّل للعام اللاراسي 2016-2017 وحتّى صدور المناهج (المطوّرة)

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Exercise \& (7 points) \& \& Effect of \& frequen \& on th \& nsity of current \& \\
\hline Question \& \multicolumn{6}{|c|}{Answer} \& Mark \\
\hline 1-1 \& \multicolumn{6}{|l|}{\(\mathrm{U}_{\mathrm{mG}}>\mathrm{U}_{\mathrm{mR}}\) with the same vertical sensitivity, (a) represents \(\mathrm{u}_{\mathrm{G}}\) and (b) represents \(\mathrm{u}_{\mathrm{R}}\).} \& 1/2 \\
\hline 1-2 \& \multicolumn{6}{|l|}{\begin{tabular}{l}
\(\left|\varphi_{1}\right|=\frac{2 \pi \times 0.8}{6.4}=\frac{\pi}{4} \mathrm{rd}\) \\
But the waveform (b) leads in phase the waveform (a), so \(u_{R}\) (or i) leads \(u_{G}\) because \(u_{R}\) reaches the maximum value before \(u_{G}\), then \(\varphi_{1}=+\frac{\pi}{4} r d\).
\end{tabular}} \& \(1 / 2\)

$1 / 2$

\hline 1-3 \& \multicolumn{6}{|l|}{$\mathrm{I}_{1 \mathrm{~m}}=\mathrm{U}_{\mathrm{Rm}} / \mathrm{R}=0.056 \mathrm{~A}$} \& 1/2

\hline 2-1 \& \multicolumn{6}{|l|}{Current resonance.} \& $1 / 4$

\hline 2-2 \& \multicolumn{6}{|l|}{$\varphi_{2}=0$} \& $1 / 4$

\hline 2-3 \& \multicolumn{6}{|l|}{| $\mathrm{LC} \omega^{2}=1$ with $\omega=2 \pi \mathrm{f}_{0}$, then $\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}=1733 \mathrm{~Hz}$. |
| :--- |
| In case of current resonance, the circuit behaves as a pure resistor. So: $\mathrm{I}_{2 \mathrm{~m}}=\mathrm{U}_{\mathrm{mG}} / \mathrm{R}=8 / 100=0.08 \mathrm{~A}$ |} \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline \multirow[t]{4}{*}{3-1} \& \multicolumn{5}{|l|}{} \& \& \multirow{4}{*}{1/2}

\hline \& $\mathrm{f}(\mathrm{Hz})$ \& 1000 \& 1500 \& $\mathrm{f}_{0}=1733$ \& 2220 \& 2500 \&

\hline \& $\mathrm{I}_{\mathrm{m}}(\mathrm{A})$ \& 0.02 \& 0.056 \& 0.08 \& 0.04 \& 0.03 \&

\hline \& φ (rd) \& 1.33 \& 0.785 \& 0 \& -1.04 \& -1.2 \&

\hline \multirow[t]{17}{*}{3-2} \& \multicolumn{6}{|l|}{\multirow[t]{2}{*}{$$
0.1 \text { K } \operatorname{lm}(A)
$$}} \&

\hline \& \& \& \& \& \& \&

\hline \& \multicolumn{2}{|l|}{$$
0.09
$$} \& - \& \& \& \&

\hline \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 0.08 \\
& 0.07
\end{aligned}
$$} \& \& \& \& \& \&

\hline \& \& \& \& \bigcirc \& \& \&

\hline \& \& \& \& \& \& \&

\hline \& \multirow[t]{2}{*}{$$
0.06
$$} \& \& \& , \& \& \&

\hline \& \& \& $$
1
$$ \& \& \& \&

\hline \& \multirow[t]{2}{*}{$$
0.05
$$} \& \& \& \& \& \&

\hline \& \& \& \& $$
8
$$ \& \& \&

\hline \& $$
0.04
$$ \& \& \& \& \& \& 1

\hline \& \multirow[t]{2}{*}{$$
0.03
$$} \& \& \& \& \& \&

\hline \& \& \& \& \& \& \&

\hline \& \multirow[t]{2}{*}{$$
0.02
$$} \& \& \& \& \& \&

\hline \& \& \& \& \& \& \&

\hline \& $$
0.01
$$ \& \& \& \& \multicolumn{2}{|c|}{$f(\mathrm{~Hz})$} \&

\hline \& \multirow[t]{2}{*}{} \& \& 1000 \& 2000 \& \& \&

\hline \multirow[t]{3}{*}{3-3} \& \multicolumn{6}{|l|}{\multirow[t]{3}{*}{When f increases, for $\mathrm{f}<\mathrm{f}_{0}, \mathrm{I}_{\mathrm{m}}$ increases and i leads u_{G} in phase; $\varphi>0$. For $\mathrm{f}=\mathrm{f}_{0}, \mathrm{I}_{\mathrm{m}}$ takes a maximum value and i and u_{G} are in phase; $\varphi=0$. When f increases, for $\mathrm{f}>\mathrm{f}_{0}, \mathrm{I}_{\mathrm{m}}$ decreases and i lags behind u_{G} in phase; $\varphi<0$.}} \& 1/2

\hline \& \& \& \& \& \& \& 1/2

\hline \& \& \& \& \& \& \&

\hline
\end{tabular}

Exercise 2 (7 points)

Energies and collisions

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark

\hline 1-1 \& $$
\begin{aligned}
& \mathrm{ME}(\mathrm{~A})=\mathrm{ME}(\mathrm{~B}) \\
& \mathrm{PE}_{\mathrm{g}}(\mathrm{~A})+\mathrm{KE}(\mathrm{~A})=\mathrm{PE}_{\mathrm{g}}(\mathrm{~B})+\mathrm{KE}(\mathrm{~B}) \\
& \mathrm{m}_{1} \mathrm{gh}_{\mathrm{A}}+0=0+1 / 2 \mathrm{~m}_{1}\left(\mathrm{v}_{1 \mathrm{~B}}\right)^{2} \\
& \mathrm{~h}_{\mathrm{A}}=\frac{1 / 2\left(\mathrm{v}_{1 \mathrm{~B}}\right)^{2}}{\mathrm{~g}} \\
& \mathrm{~h}_{\mathrm{A}}=\frac{1 / 2(4)^{2}}{10} \\
& \mathrm{~h}_{\mathrm{A}}=0.8 \mathrm{~m} \\
& \hline
\end{aligned}
$$ \& $1 / 2$

$3 / 4$

\hline 1-2 \& Explanation:

$$
\begin{aligned}
& \operatorname{ME}(\mathrm{O})-\operatorname{ME}(\mathrm{B})=\mathrm{W}(\overrightarrow{\mathrm{f}})_{\mathrm{B} \rightarrow \mathrm{O}} \\
& \mathrm{PE}_{\mathrm{g}}(\mathrm{O})+\operatorname{KE}(\mathrm{O})-\mathrm{PE}_{\mathrm{g}}(\mathrm{~B})-\mathrm{KE}(\mathrm{~B})=\mathrm{W}(\overrightarrow{\mathrm{f}})_{\mathrm{B} \rightarrow \mathrm{O}} \\
& 0+1 / 2 \mathrm{~m}_{1}\left(\mathrm{v}_{10}\right)^{2}-0-1 / 2 \mathrm{~m}_{1}\left(\mathrm{v}_{1 B}\right)^{2}=\mathrm{W}(\overrightarrow{\mathrm{f}})_{\mathrm{B}} \rightarrow \mathrm{O} \\
& \mathrm{~W}(\overrightarrow{\mathrm{f}})_{\mathrm{B} \rightarrow \mathrm{O}}=1 / 2 \times 0.2 \times(2)^{2}-0-1 / 2 \times 0.2 \times(4)^{2} \\
& \mathrm{~W}(\overrightarrow{\mathrm{f}})_{\mathrm{B} \rightarrow \mathrm{O}}=-1.2 \mathrm{~J}
\end{aligned}
$$ \& $1 / 2$

$3 / 4$

\hline 1-3 \& $$
\begin{aligned}
& \mathrm{W}(\overrightarrow{\mathrm{f}})_{\mathrm{B} \rightarrow \mathrm{O}}=\overrightarrow{\mathrm{f}} \cdot \overrightarrow{\mathrm{BO}}=-\mathrm{f} \times \mathrm{BO} \\
& \mathrm{f}=-\frac{\mathrm{W}(\overrightarrow{\mathrm{f}})_{\mathrm{B}} \rightarrow \mathrm{O}}{\mathrm{BO}} \\
& \mathrm{f}=-\frac{-1.2}{1}=1.2 \mathrm{~N}
\end{aligned}
$$ \& 1

\hline 2-1 \& | During the collision, the linear momentum of the system [($\left.\left.\mathrm{S}_{1}\right),\left(\mathrm{S}_{2}\right)\right]$ is conserved: $\overrightarrow{\mathrm{p}}_{\text {before }}=\overrightarrow{\mathrm{p}}_{\text {after }}$ |
| :--- |
| In algebraic values along the positive direction: $\mathrm{m}_{1} \mathrm{v}_{1 \mathrm{O}}+0=\mathrm{m}_{1} \mathrm{v}^{\prime}{ }_{1 \mathrm{O}}+\mathrm{m}_{2} \mathrm{v}^{\prime}{ }_{2 \mathrm{O}}$ $\left.\mathrm{m}_{1}\left(\mathrm{v}_{10}-\mathrm{v}^{\prime}{ }_{10}\right)=\mathrm{m}_{2} \mathrm{v}^{\prime}{ }_{2 \mathrm{O}} \quad \text { (equation } 1\right)$ |
| The collision being elastic, then the kinetic energy of the system is conserved: |
| $\mathrm{KE}_{\text {before }}=\mathrm{KE}_{\text {after }}$ $1 / 2 m_{1}\left(v_{10}\right)^{2}+0=1 / 2 \mathrm{~m}_{1}\left(\mathrm{v}^{\prime} 10\right)^{2}+1 / 2 \mathrm{~m}_{2}\left(\mathrm{v}^{\prime} 2 \mathrm{O}\right)^{2}$ |
| $\mathrm{m}_{1}\left(\mathrm{v}_{10}-\mathrm{v}^{\prime}{ }_{10}\right)\left(\mathrm{v}_{10}+\mathrm{v}^{\prime}{ }_{10}\right)=\mathrm{m}_{2}\left(\mathrm{v}^{\prime} 2 \mathrm{O}\right)^{2} \quad$ (equation 2$)$ |
| Using both equations, (equation 2) and (equation 1), we get: $\begin{equation*} \mathrm{v}_{1 \mathrm{O}}+\mathrm{v}^{\prime}{ }_{10}=\mathrm{v}^{\prime}{ }_{20} \tag{equation3} \end{equation*}$ |
| Using the equations, (equation 1) and (equation 3), we get : $v^{\prime}{ }_{10}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) v_{10}$ |
| Which gives: $\mathrm{v}^{\prime}{ }_{10}=-2 / 3=-0.67 \mathrm{~m} / \mathrm{s}$ then replace in (equation 3), we get: $\mathrm{v}^{\prime} 2 \mathrm{O}=4 / 3=1.33 \mathrm{~m} / \mathrm{s}$. | \& 1

$1 / 2$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 2-2 \& \begin{tabular}{l}
The mechanical energy of the system [(\(\left.\mathrm{S}_{2}\right)\), spring, Earth] is conserved. \(\operatorname{ME}(\mathrm{O})=\mathrm{ME}(\mathrm{D})\) \\
\(\mathrm{PE}_{\mathrm{g}}(\mathrm{O})+\mathrm{PE}_{\mathrm{e}}(\mathrm{O})+\mathrm{KE}(\mathrm{O})=\mathrm{PE}_{\mathrm{g}}(\mathrm{D})+\mathrm{PE}_{\mathrm{e}}(\mathrm{D})+\mathrm{KE}(\mathrm{D})\) \\
\(0+0+1 / 2 \mathrm{~m}_{2}\left(\mathrm{v}{ }^{\prime} 2 \mathrm{O}\right)^{2}=0+1 / 2 \mathrm{k}\left(\mathrm{x}_{\mathrm{m}}\right)^{2}+0\) \\
\(\mathrm{m}_{2}\left(\mathrm{~V}^{\prime} 2 \mathrm{O}\right)^{2}=\mathrm{k}\left(\mathrm{x}_{\mathrm{m}}\right)^{2}\) \\
\(\mathrm{x}_{\mathrm{m}}=\left(\mathrm{v}^{\prime}{ }_{20}\right) \sqrt{\frac{\mathrm{m}_{2}}{\mathrm{k}}}\) \\
\(\mathrm{x}_{\mathrm{m}}=\frac{4}{3} \sqrt{\frac{0.4}{100}}\) \\
\(\mathrm{x}_{\mathrm{m}}=\mathrm{OD}=0.084 \mathrm{~m}=8.4 \mathrm{~cm}\)
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 2-3-1 \& The decrease in the mechanical energy of the system [(S_{2}), Earth, spring] is equal to: $|\Delta \mathrm{ME}|=1 / 2 \mathrm{~m}_{2}\left(\mathrm{v}^{\prime}{ }_{20}\right)^{2}-1 / 2 \mathrm{k}\left(\mathrm{x}^{\prime} \mathrm{m}\right)^{2}=1 / 2 \times 0.4 \times(4 / 3)^{2}-1 / 2 \times 100 \times(0.064)^{2}=0.15 \mathrm{~J}$ \& 1/2

\hline 2-3-2 \& This decrease appears in the form of thermal energy (heat). \& 1/2

\hline
\end{tabular}

Exercise 3 (6 points) Radioactivity of Thallium

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1-1 \& \begin{tabular}{l}
By applying Soddy's laws: \\
Conservation of the mass number: \(207=A+0+0 \Rightarrow A=207\) \\
Conservation of the charge number: \(81=Z-1+0 \Rightarrow Z=82\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 4 \\
\& 1 / 4 \\
\& 1 / 4 \\
\& \hline
\end{aligned}
\] \\
\hline 1-2 \& The radioactive period of a substance is the time interval at the end of which the activity becomes equal to half of its initial value. \& 1/2 \\
\hline 1-3 \& \[
\lambda=\frac{\ln 2}{\mathrm{~T}}=\frac{0.693}{135 \times 24 \times 3600}=5.94 \times 10^{-8} \mathrm{~s}^{-1}
\] \& 1/2 \\
\hline 1-4 \& The Lead daughter nucleus, produced by the decay, is obtained in an excited state; it will last, in this state, for a short time, after which, it undergoes a downward transition and this de-excitation is accompanied by the emission of a \(\gamma\) radiation. \& \(1 / 4\) \\
\hline 1-5 \& \begin{tabular}{l}
The law of conservation of total energy: \\
\(\mathrm{m}(\mathrm{Tl}) \cdot \mathrm{c}^{2}=\mathrm{m}(\mathrm{Pb}) \cdot \mathrm{c}^{2}+\mathrm{m}\left(\mathrm{e}^{-}\right) \cdot \mathrm{c}^{2}+\mathrm{KE}\left(\mathrm{e}^{-}\right)+\mathrm{E}(\gamma)+\mathrm{E}\left({ }_{0}^{0} \overline{\mathrm{v}}\right)\) \\
so \(\Delta \mathrm{m} . \mathrm{c}^{2}=\left(206.9775-206.9759-5.486 \times 10^{-4}\right) \times 931.5\) \\
and \(\Delta \mathrm{m} . \mathrm{c}^{2}=0.70+\mathrm{E}(\gamma)+0.10\) \\
then: \(\mathrm{E}(\gamma)=0.97938-0.80=0.179 \mathrm{MeV}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \\
\hline 2-1 \& \(\frac{\mathrm{m}}{\mathrm{M}}=\frac{\mathrm{N}_{0}}{\mathrm{~N}_{\mathrm{A}}}\) then \(\mathrm{N}_{0}=2.9096 \times 10^{21}\) nuclei. \& 1/2 \\
\hline 2-2 \& \(\mathrm{A}_{0}=\lambda \mathrm{N}_{0}=5.94 \times 10^{-8} \times 2.9096 \times 10^{21}=1.7283 \times 10^{14} \mathrm{~Bq}\) \& 1/2 \\
\hline 2-3-1 \& \begin{tabular}{l}
The number of nuclei of thallium remaining at the end of one day:
\[
\mathrm{N}_{1}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}}=2.9096 \times 10^{21} \mathrm{e}^{\left(-5.94 \times 10^{-8} \times 24 \times 3600\right)}=2.8947 \times 10^{21} \text { nuclei }
\] \\
The number of disintegrated nuclei is: \(\mathrm{N}=\mathrm{N}_{0}-\mathrm{N}_{1}=1.49 \times 10^{19}\) nuclei But the number of emitted electrons is equal to the number of disintegrated nuclei Then: \(\mathrm{N}_{\mathrm{e}-}=1.49 \times 10^{19}\) electrons
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 2-3-2 \& $\mathrm{E}=\mathrm{N}_{\mathrm{e}-} \times \mathrm{KE}\left(\beta^{-}\right)=1.49 \times 10^{19} \times 0.70=1.043 \times 10^{19} \mathrm{MeV}=1.668 \times 10^{6} \mathrm{~J}$ \& 1/2

\hline 2-3-3 \& $\mathrm{P}_{\mathrm{av}}=\mathrm{E} / \Delta \mathrm{t}=1.668 \times 10^{6} /(24 \times 3600)=19.3 \mathrm{~W}$ \& 1/2

\hline
\end{tabular}

