المادة: الرياضيات الثهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم - االمدّة : أربع ساعات	الهيئة الأكاديميّة المشتركة قسم : الرياضيات	

ارشادات عامة : - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتز ام بترتيب المسائل الوارد في المسابقة.

I- (2points)

Answer true or false and justify.

1) The complex number $(-1+i)^{10}$ is real .
2) The function f^{\prime} defined as $f^{\prime}(x)=\int_{0}^{x^{2}} \sqrt{t^{2}+4} d t$ is the derivative function of a function f. then the function f doesn't have an inflection point over \mathbb{R}.
3) If $f(x)=x^{2} e^{x}$, then the nth derivative is $f^{(n)}(x)=\left(x^{2}+2 n x+(n-1)\right) e^{x}$ for all $n \in \mathbb{N}^{*}$.
4) $1+\mathrm{i}+\ldots+\mathrm{i}^{19}=0$ (i is imaginary).

II- (2points).

In the plane referred to an orthonormal system ($\mathrm{O} ; \mathrm{i}, \mathrm{j}, \mathrm{k}$) , consider the plane (P) with equation $3 \mathrm{x}+\mathrm{y}-5=0$, and the lines (D) and (D^{\prime}) defined as :
(D) : $\left\{\begin{array}{l}\mathrm{x}=\mathrm{t} \\ \mathrm{y}=-3 \mathrm{t}+5 \\ \mathrm{z}=\mathrm{t}-4\end{array} \quad\right.$ (D') : $\left\{\begin{array}{l}x=m+1 \\ y=-2 m-1 \\ z=-m+3\end{array}\right.$
1)
a) Verify that (P) is perpendicular to the plane (XOY).
b) Prove that (D) is included in (P).
2) Prove that (D) and (D') intersect at a point A with coordinates to be determined. In what follows, given the point $\mathrm{B}(0,1,4)$.
3) Consider in the plane (Q) formed by (D) and (D') the circle (C) with center A and radius $A B$.
a) Write an equation of (Q).
b) Write a system of parametric equations of the line (Δ), tangent at B to the circle (C).
4) Calculate the coordinates of E and F , the intersection points of the circle (C) with the line (D).

III- (3points)

Consider two boxes U and V .

- The box U contains 10 cards where three of them have the letter $\mathrm{A}, 5$ have the letter B and 2 the letter C.
- The box V contains 6 balls where two of them are red and four are black .

The rule of game is the following :
One card is randomly selected from the box U .

- If the player selects a card A then he draws two balls from the box V, one after another with replacement
- If the player selects a card B, then he draws two balls from the box V, one after another without replacement.
- The game stops when the player selects a card C or he selects one black ball .

Consider the following events :
A: «Select a card named A»
B: «Select a card named B »
C: «Slect a card named C»
G: «The player wins»
The player wins only if he selects 2 red balls one after another or he selects a card C .

1) Calculate $\mathrm{P}(\mathrm{G} / \mathrm{A})$ and show that $\mathrm{P}(\mathrm{G} \cap \mathrm{A})=\frac{1}{30}$.
2) Calculate $P(G \cap B)$, then $P(G)$.
3) To participate in this game, the player should pay 2000 LL . He wins 5000 LL if he selects a card named C and 3000 LL if he selects 2 red balls .
Let X be the random variable that is equal to the amount got by the player .
a) Show that the three values of X are $-2000,1000$ and 3000 .
b) Determine the probability distribution of X.
c) Estimate the amount got by the organizer if 100 players participate to this game.

IV- (3 pts)

In the oriented plane, given a rectangle ABCD with center O so that $A B=4 \mathrm{~cm}$, and $(\overrightarrow{A B}, \overrightarrow{A C})=\frac{\pi}{6}(2 \pi)$.

Let E be the symmetric of A wit respect to D . Denote by S the similitude that maps E onto O and A onto B . .

1. Verify that the ratio of the similitude is $k=\frac{1}{2}$ and determine a measure of the angle α of S.
2. Determine the image of D under S. Show that C is the center of S.
3. Let I be the point of $[E O]$, distinct from E and O; and (Γ) the circle with center I and passing through A. (Γ) intersects $(A D)$ and $(A B)$ respectively at M and P.
a. Draw (Γ) and plot the points M and P.
b. Justify that $C \in(\Gamma)$.
4. Let N be the orthogonal projection of C on (MP).
a. Show that $\quad(\overrightarrow{M P}, \overrightarrow{M C})=\frac{\pi}{6}(2 \pi)$.
b. Deduce that $S(M)=N$.
5. Prove that B , N and D are colinear .
6. The plane is referred to an orthonormal direct system (A, \vec{u}, \vec{v}), with $\vec{u}=\frac{1}{4} \overrightarrow{A B}$.
a. Determine the affixes of the points B and C.
b. Give the complex form of S.

V-(3points)

 In the next figure, FKH is a right triangle at K with $\mathrm{FK}=3 \mathrm{~cm}$ and $\mathrm{KH}=\sqrt{3} \mathrm{~cm}$.

Let A be a point on $[\mathrm{FK}]$ so that $\mathrm{AK}=1 \mathrm{~cm}$ and A^{\prime} is the symmetric of F
With respect to K.
Denote by (H) the hyperbola with focus F, and directrice (KH) and eccentricity 2 .
1.a Determine the focal axis of (H).
b. Prove that A and A' are the vertices of (H).
2.a.Determine the center O of (H) and the second focus F^{\prime}.
b. Show that (OH) is an asymptote of (H) then find the second asymptote .
c.Draw (H).
3.Let G be a point so that $\overrightarrow{F G}=2 \sqrt{3} \overrightarrow{K H}$, prove that G is a point on (H).
4.The plane is referred to an orthonormal system (O, \vec{u}, \vec{v}), with $\vec{u}=\overrightarrow{O K}$.
a. a-Verify that an equation of (H) is : $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$
b. b- Prove that (GK) is tangent to (H).

VI-. (7pts)

The plane is referred to the orthonormal system $(0, \vec{\imath}, \vec{\jmath})$.

(Part A)

Consider the differential equation (E) defined as : $y^{\prime}+y=1-2 e^{-x+1}$.

1. Determine a and b so that $Y=a+b x e^{-x}$ is a particular solution of (E).
2. Solve (E). Deduce the particular solution of (E) so that $y(1)=0$.

(Part B)

Let g be a function defined over, as $\quad g(x)=1+(1-2 x) e^{-x+1} .(C)$ is its representative curve .

1. Determine $\lim _{x \rightarrow+\infty} g(x)$. Give a geometric interpretation.
2. Calculate $g^{\prime}(x)$ the derivative of $g(x)$. Set up the table of variations of g.
3. Prove that $g(x)=0$ has two roots 1 and α so that $\alpha \in[2.25,2.26]$.

Verify that $e^{\alpha-1}=2 \alpha-1$.
4. Solve $g(x) \leq 0$. Deduce the solutions of the inequality $g\left(x^{2}\right) \leq 0$.
5. Draw (C).
6. Calculate the area of the region bounded by (C), the line (Δ) with equation $y=1$ and the two lines with equations $\mathrm{x}=1$ and $\mathrm{x}=2$.

(Part C)

Let f be the function f defined over \mathbb{R} as $\quad f(x)=1+x+x e^{-x^{2}+1} \cdot(\Gamma)$ its representative curve and (d) the line with equation $y=x+1$.

1. Calculate $f(-x)+f(x)$. Make a conclusion .
2. Determine $\lim _{x \rightarrow+\infty} f(x)$. Show that (d) is an asymptote when x tends to $+\infty$.

Discuss the relative position of (Γ) and (d).
3. Prove that $f^{\prime}(x)=g\left(x^{2}\right)$ for all $\mathrm{x} \in\left[0,+\infty\left[\right.\right.$. Verify that $f(\sqrt{\alpha})=1+\frac{2 \alpha \sqrt{\alpha}}{2 \alpha-1}$.
4. Set up the table of variations of f.
5. Draw (Γ).
6. Let $\left(U_{n}\right)_{n \geq 0}$ be the sequence defined as : $U_{n}=\int_{0}^{1}[f(n x)-n x] d x$.
a. Calculate U_{0}.
b. Write U_{n} in terms of n. Determine $\lim _{n \rightarrow+\infty} U_{n}$.

	الهيئة الاكاديميّة المشتركة قسم : الرياضيات	

QI		Notes
1	False $:$ on the $\mathrm{y}-$ axis .	1
2	False :its has at $\mathrm{x}=0$ an inflection point .	1
3	False $:$ for $\mathrm{n}=2$	1
4	True $:$ its a sum of a geometric sequence with first term 1 and ratio $\mathrm{q}=\mathrm{i}$	1

QII		Notes
1.a	$(3,1,0) \cdot(0,0,1)=0$ Then (P) is perpendicular to the plane XOY	0,5
1.b	$3 \mathrm{t}-3 \mathrm{t}+5-5=0 \Rightarrow(D) \subset(P)$	0,5
2	$\mathrm{~A}(4,7,0)$ for $\mathrm{m}=3$ et $\mathrm{t}=4$	0,5
$3 . \mathrm{a}$	$(\mathrm{Q}): 5 \mathrm{x}+2 \mathrm{y}+\mathrm{z}-6=0$	
$3 . \mathrm{b}$	$\vec{u}=\overrightarrow{A B} \wedge \vec{n}$ with \vec{u} direction vector of the tangent and \vec{n} normal vector of (Q). $(\Delta):\left\{\begin{array}{l}x=0 \\ y=6 \lambda+1 \\ z=-12 \lambda+4\end{array}\right.$ 4$t=4+\frac{4 \sqrt{66}}{11}$ et $t=4-\frac{4 \sqrt{66}}{11}$	1

QIII					Notes
1	$\mathrm{P}(\mathrm{G} / \mathrm{A})=\frac{2}{6} \times \frac{2}{6}=\frac{1}{9} \cdot \mathrm{P}(\mathrm{G} \cap \mathrm{~A})=\mathrm{P}(\mathrm{G} / \mathrm{A}) \times \mathrm{P}(\mathrm{~A})=\frac{1}{9} \times \frac{3}{10}=\frac{1}{30}$				1
2	$\begin{aligned} & P(G \cap B)=P(G / B) \times P(B)=\frac{2}{6} \times \frac{1}{5} \times \frac{1}{2}=\frac{1}{30} \\ & P(G)=P(G \cap A)+P(G \cap B)+P(C)=\frac{4}{15} \end{aligned}$				1
3.a	$-2000(\overline{\mathrm{G}}), 1000(\mathrm{G} \cap \mathrm{A} \mathrm{ou} \mathrm{G} \cap \mathrm{B}), 3000(\mathrm{C})$.				1
3.b	x_{i}	-2000	1000	3000	1
	$\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$	$\frac{11}{15}$	$\frac{1}{15}$	$\frac{1}{5}$	
$3 . c$	$E(x)=-800$ Then the gain of the organizer is $800 \times 100=80000 \mathrm{LL}$.				1

Q 4		
1.	$k=\frac{O B}{E A}$, using the equilateral triangle $O B C: k=\frac{B C}{2 B C}$	
	$k=\frac{1}{2}$ et $\alpha=(\overrightarrow{A E}, \overrightarrow{B O})=(B C, B O)=\frac{\pi}{3}(2 \pi)$	$\mathbf{1}$

2	The image D under S, D 'is the midpoint of $[B O]$. $E A C$ is an equilateral triangle. The image of the triangle $E A C$ under S is the equilateral $O B C$, then $S(C)=C$. Then, C is the center of S.	0,5
3.a		0.5
3.b	(OE) is the perpendicular bisector of [AC]. $\mathrm{I} \in(\mathrm{OE})$ then $\mathrm{IC}=\mathrm{IA}, \mathrm{C} \in(\Gamma)$.	0.5
.4.a	$(\overrightarrow{M P}, \overrightarrow{M C})=(\overrightarrow{A P}, \overrightarrow{A C})=\frac{\pi}{6} \quad(2 \pi)$.	0.5
.4.b	The triangle $M N C$ is equilateral , then $(\overrightarrow{C M}, \overrightarrow{C N})=\frac{\pi}{3} \quad(2 \pi)$. and $C N=\frac{1}{2} C M$. Then,$S(M)=N$.	1
5	$\begin{aligned} & D \in(O B) . \\ & M \in(E A) \text { then } N \in(O B) \end{aligned}$ B, N and D are collinear .	1
6.a	$Z_{B}=4$ et $Z_{C}=4+4 \frac{\sqrt{3}}{3} i$	0.5
.6.b	$\begin{aligned} & z^{\prime}=\frac{1}{2} e^{i \frac{\pi}{3}} z+\left(1-\frac{1}{2} e^{i \frac{\pi}{3}}\right)\left(4+4 \frac{\sqrt{3}}{3} i\right) \\ & z^{\prime}=\frac{1}{2} e^{i \frac{\pi}{3}} z+4 \end{aligned}$	0.5
Q5		
1.a	The focal axis is (FK)	0.5
1.b	$\frac{A F}{A K}=2 \frac{A^{\prime} F}{A^{\prime} K}=2$ with A and A'on (FK)	1
2.a	O is the midpoint of [AA'] F' symetric of F with respect to O .	0.5

	$g(2.26)=1.54 \bullet 10^{-3}$ g is continuous and strictly decreasing on $[2,25 ; 2,26]$ then α is a root. $\mathrm{g}(\alpha)=0 \text { if and only if } \mathrm{e}^{\alpha-1}=2 \alpha-1$	
4	$\mathrm{g}(\alpha) \leq 0$ if and only if $\mathrm{x} \in[1, \alpha]$. $g\left(x^{2}\right) \leq 0$ if and only if $x^{2} \in[1, \alpha]$, if and only if $x \in[1, \alpha]$.	1
5		1.5
6	$A=\int_{1}^{2}\left[y_{(\Delta)}-g(x)\right] d x=\int_{1}^{2}\left[-(1-2 x) e^{-x+1}\right] d x$ With integration by part : $\begin{aligned} & \int_{1}^{2}-(1-2 x) e^{-x+1} d x=3-\frac{5}{e} \approx 1.1606 \\ & A=1,16 u^{2} \end{aligned}$	1
partie C		
1	$\mathrm{f}(-\mathrm{x})+\mathrm{f}(\mathrm{x})=2$, and f is centered at 0 . $\mathrm{I}(0,1)$ is center of symmetry of the curve.	0.5
2	$\begin{aligned} & \lim _{x \rightarrow+\infty} f(x)=+\infty \text { et } \lim _{x \rightarrow+\infty}\left[\mathrm{f}(\mathrm{x})-\mathrm{y}_{(d)}\right]=0 \\ & \mathrm{f}(\mathrm{x})-\mathrm{y}{ }_{(d)}=\mathrm{x} e^{-x^{2}+1} . \\ & \mathrm{x} e^{-x^{2}+1}>0 \text { if } \mathrm{x}>0 \text { then }(\Gamma) \text { is above (d). } \\ & \mathrm{x} e^{-x^{2}+1}=0 \text { if } \mathrm{x}=0 \text { then }(\Gamma) \text { intersects (d). } \\ & \mathrm{x} e^{-x^{2}+1}<0 \text { then }(\Gamma) \text { is below (d). } \end{aligned}$	1
3	$\begin{aligned} & f^{\prime}(x)=g\left(x^{2}\right) \\ & f(\sqrt{\alpha})=1+\frac{2 \alpha \sqrt{\alpha}}{2 \alpha-1} \end{aligned}$	0.5

