المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم - ١-

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ارشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (2points)

Answer true or false and justify.

- 1) The complex number $(-1+i)^{10}$ is real.
- 2) The function f' defined as $f'(x) = \int_0^{x^2} \sqrt{t^2 + 4} dt$ is the derivative function of a function f. then the function f doesn't have an inflection point over \mathbb{R} .
- 3) If $f(x) = x^2 e^x$, then the nth derivative is $f^{(n)}(x) = (x^2 + 2nx + (n-1))e^x$ for all $n \in \mathbb{N}^*$.
- 4) $1+i+...+i^{19}=0$ (i is imaginary).

II- (2points).

In the plane referred to an orthonormal system (O ; i , j , k) , consider the plane (P) with equation 3x+y-5=0 , and the lines (D) and (D') defined as :

(D):
$$\begin{cases} x = t \\ y = -3t + 5 \\ z = t - 4 \end{cases}$$
 (D'):
$$\begin{cases} x = m + 1 \\ y = -2m - 1 \\ z = -m + 3 \end{cases}$$

1)

- a) Verify that (P) is perpendicular to the plane (XOY).
- **b)** Prove that (D) is included in (P).
- 2) Prove that (D) and (D') intersect at a point A with coordinates to be determined . In what follows, given the point B(0,1,4).
- 3) Consider in the plane (Q) formed by (D) and (D') the circle (C) with center A and radius AB.
 - a) Write an equation of (Q).
 - b) Write a system of parametric equations of the line (Δ) , tangent at B to the circle (C).
- **4)** Calculate the coordinates of E and F, the intersection points of the circle (C) with the line (D).

III- (3points)

Consider two boxes U and V.

- The box U contains 10 cards where three of them have the letter A, 5 have the letter B and 2 the letter C.
- The box V contains 6 balls where two of them are red and four are black .

The rule of game is the following:

One card is randomly selected from the box U.

- ullet If the player selects a card A then he draws two balls from the box V , one after another with replacement
- $\bullet \quad \text{If the player selects a card } \ B, \text{ then he draws two balls from the box } V \ , \text{ one after another } \\ \text{without replacement} \ .$
- The game stops when the player selects a card C or he selects one black ball .

Consider the following events:

A: « Select a card named A»

B: « Select a card named B »

C: « Slect a card named C »

G: « The player wins »

The player wins only if he selects 2 red balls one after another or he selects a card C.

- 1) Calculate P(G/A) and show that $P(G \cap A) = \frac{1}{30}$.
- 2) Calculate $P(G \cap B)$, then P(G).
- 3) To participate in this game, the player should pay 2000 LL. He wins 5000 LL if he selects a card named C and 3000 LL if he selects 2 red balls.

Let X be the random variable that is equal to the amount got by the player.

- a) Show that the three values of X are -2000, 1000 and 3000.
- **b)** Determine the probability distribution of X.
- c) Estimate the amount got by the organizer if 100 players participate to this game.

IV- (3 pts)

In the oriented plane, given a rectangle ABCD with center O so that AB = 4cm,

and
$$(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{6} (2\pi)$$
.

Let E be the symmetric of A wit respect to D . Denote by S the similitude that maps E onto O and A onto B .

- 1. Verify that the ratio of the similar is $k = \frac{1}{2}$ and determine a measure of the angle α of S.
- 2. Determine the image of D under S. Show that C is the center of S.
- 3. Let I be the point of [EO], distinct from E and O; and (Γ) the circle with center I and passing through A. (Γ) intersects (AD) and (AB) respectively at M and P.
 - a. Draw (Γ) and plot the points M and P.
 - b. Justify that $C \in (\Gamma)$.
 - 4. Let N be the orthogonal projection of C on (MP).
 - a. Show that $(\overrightarrow{MP}, \overrightarrow{MC}) = \frac{\pi}{6} (2\pi)$.
 - b. Deduce that S(M) = N.
 - 5. Prove that B, N and D are colinear.
 - 6. The plane is referred to an orthonormal direct system (A, \vec{u}, \vec{v}) , with $\vec{u} = \frac{1}{4} \overrightarrow{AB}$.
 - a. Determine the affixes of the points B and C.
 - b. Give the complex form of S.

V-(3points)

In the next figure, FKH is a right triangle at K with FK=3cm and KH= $\sqrt{3}$ cm.

Let A be a point on [FK] so that AK=1cm and A'is the symmetric of F

With respect to K.

Denote by (H) the hyperbola with focus F, and directrice (KH) and eccentricity 2.

- 1.a Determine the focal axis of (H).
 - b. Prove that A and A' are the vertices of (H) .
- 2.a.Determine the center O of (H) and the second focus F'.

b. Show that (OH) is an asymptote of (H) then find the second asymptote . c.Draw (H).

3.Let G be a point so that $\overrightarrow{FG} = 2\sqrt{3}\overrightarrow{KH}$, prove that G is a point on (H).

4. The plane is referred to an orthonormal system $(0, \vec{u}, \vec{v})$, with $\vec{u} = \overrightarrow{OK}$.

a. a-Verify that an equation of (H) is :
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

b. b- Prove that (GK) is tangent to (H).

VI-. (7pts)

The plane is referred to the orthonormal system $(0, \vec{i}, \vec{j})$.

(Part A)

Consider the differential equation (E) defined as : $y' + y = 1 - 2e^{-x+1}$.

- 1. Determine a and b so that $Y = a + bxe^{-x}$ is a particular solution of (E).
- 2. Solve (E). Deduce the particular solution of (E) so that y(1) = 0.

(Part B)

Let g be a function defined over, as $g(x) = 1 + (1 - 2x)e^{-x+1}$. (C) is its representative curve.

- 1. Determine $\lim_{x \to +\infty} g(x)$. Give a geometric interpretation.
- 2. Calculate g'(x) the derivative of g(x). Set up the table of variations of g.
- 3. Prove that g(x) = 0 has two roots 1 and α so that $\alpha \in [2.25, 2.26]$. Verify that $e^{\alpha 1} = 2\alpha 1$.
- 4. Solve $g(x) \le 0$. Deduce the solutions of the inequality $g(x^2) \le 0$.
- 5. Draw(C).
- 6. Calculate the area of the region bounded by (C), the line (Δ) with equation y = 1 and the two lines with equations x=1 and x=2.

(Part C)

Let f be the function f defined over \mathbb{R} as $f(x) = 1 + x + xe^{-x^2 + 1} \cdot (\Gamma)$ its representative curve

and (d) the line with equation y = x + 1.

- 1. Calculate f(-x)+f(x). Make a conclusion.
- 2. Determine $\lim_{x \to +\infty} f(x)$. Show that (d) is an asymptote when x tends to $+\infty$.

Discuss the relative position of (Γ) and (d).

- 3. Prove that $f'(x) = g(x^2)$ for all $x \in [0, +\infty[$. Verify that $f(\sqrt{\alpha}) = 1 + \frac{2\alpha\sqrt{\alpha}}{2\alpha 1}$.
- 4. Set up the table of variations of f.
- 5. Draw (Γ) .

6. Let $(U_n)_{n\geq 0}$ be the sequence defined as : $U_n = \int_0^1 [f(nx) - nx] dx$.

a. Calculate $\boldsymbol{U}_{\scriptscriptstyle{0}}$.

b. Write U_n in terms of n. Determine $\lim_{n\to+\infty} U_n$.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -١-المدّة: أربع ساعات

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١٧ وحتى صدور المناهج المطوّرة)

QI		Notes
1	False: on the y – axis.	1
2	False :its has at $x=0$ an inflection point.	1
3	False: for n=2	1
4	True: its a sum of a geometric sequence with first term 1 and ratio q=i	1

QII		Notes
1.a	(3,1,0)(0,0,1) = 0 Then (P) is perpendicular to the plane XOY	0,5
1.b	$3t-3t+5-5=0 \Rightarrow (D) \subset (P)$	0,5
2	A(4,7,0) for m=3 et t=4	0,5
3.a	(Q):5x+2y+z-6=0	0,5
3.b	$\vec{u} = \overrightarrow{AB} \wedge \vec{n} \text{ with } \vec{u} \text{ direction vector of the tangent and } \vec{n} \text{ normal vector of } (Q).$ $(\Delta) : \begin{cases} x = 0 \\ y = 6\lambda + 1 \\ z = -12\lambda + 4 \end{cases}$	1
	$t = 4 + \frac{4\sqrt{66}}{11}$ et $t = 4 - \frac{4\sqrt{66}}{11}$	1

QIII				Notes	
1	$P(G/A) = \frac{2}{6} \times \frac{2}{6} = \frac{1}{9} \cdot P(G \cap A) = P(G/A) \times P(A) = \frac{1}{9} \times \frac{3}{10} = \frac{1}{30}$			1	
2	$P(G \cap B) = P(G/B)$	$B) \times P(B) = \frac{2}{6} \times \frac{1}{5} \times \frac{1}{5}$	$\frac{1}{2} = \frac{1}{30}$		1
	$P(G)=P(G \cap A) + P(G \cap B) + P(C) = \frac{4}{15}$				1
3.a	$-2000(\overline{G})$, $1000(G \cap A \text{ ou } G \cap B)$, $3000(C)$.			1	
3.b	Xi	-2000	1000	3000	
	P(X=x _i)	11 15	1 15	$\frac{1}{5}$	1
3.c	E(x) = -800 Then the gain of the organizer is $800 \times 100 = 80\ 000\ LL$.			1	

Q4		
1.	$k = \frac{OB}{EA}$, using the equilateral triangle OBC : $k = \frac{BC}{2BC}$	
	$k = \frac{1}{2} \operatorname{et} \alpha = (\overrightarrow{AE}, \overrightarrow{BO}) = (BC, BO) = \frac{\pi}{3} (2\pi)$	1

	The image D under S , D 'is the midpoint of BO .	
2	EAC is an equilateral triangle. The image of the triangle EAC under S is the equilateral OBC , then $S(C) = C$. Then, C is the center of S .	0,5
3.a	8- 7- M 6- 5- E 4- 3- 2- 1-1- 0 1 2 3 4 5 6	0.5
3.b	(OE) is the perpendicular bisector of [AC]. $I \in (OE)$ then $IC = IA$, $C \in (\Gamma)$.	0.5
.4.a	$(\overrightarrow{MP}, \overrightarrow{MC}) = (\overrightarrow{AP}, \overrightarrow{AC}) = \frac{\pi}{6} (2\pi).$	
.4.b	The triangle MNC is equilateral, then $(\overrightarrow{CM}, \overrightarrow{CN}) = \frac{\pi}{3}$ (2π) . and $CN = \frac{1}{2}CM$. Then $S(M) = N$.	
5	$D \in (OB)$. $M \in (EA)$ then $N \in (OB)$ B, N and D are collinear.	1
6.a	$Z_B = 4 \text{ et } Z_C = 4 + 4 \frac{\sqrt{3}}{3} i$	0.5
.6.b	$Z_{B} = 4 \text{ et } Z_{C} = 4 + 4 \frac{\sqrt{3}}{3} i$ $z' = \frac{1}{2} e^{i\frac{\pi}{3}} z + (1 - \frac{1}{2} e^{i\frac{\pi}{3}})(4 + 4 \frac{\sqrt{3}}{3} i)$ $z' = \frac{1}{2} e^{i\frac{\pi}{3}} z + 4.$	0.5
Q5		
1.a	The focal axis is (FK)	0.5
1.b	$\frac{AF}{AK} = 2 \frac{A'F}{A'K} = 2$ with A and A'on (FK)	1
2.a	O is the midpoint of [AA'] F' symetric of F with respect to O.	0.5

	The tangent of the angle formed by (OH) and the focal axis is equal to		
2.b	$\sqrt{3} = \frac{b}{a}$ with a=OA=2 C=OF=4 et $c^2 = a^2 + b^2$		
	α		
	The second asymptote is symetric of (OH) with respect the perpendicular line at O.	0.5	
2.c		0.5	
3.	$\frac{GF}{d(G/(HK))} = 2 \text{ then G is on (H)}.$		
4.a	Since a=2 and b = $2\sqrt{3}$, centre O and the focal axe is x'ox.		
4.b	Since $a=2$ and $b=$ $G(4;6) \text{ and } K(1,0) \text{ and } (GK) : y=2x-2 \text{ is the tangent at } G \text{ to } (H).$		
Q.6			
part A			
1	$Y=a +bxe^{-x}$, Y verify (E), then a =1 and b= -2e		
.2	The general solution is : $y=ce^{-x} + Y = Ce^{-x} + 1 - 2xe^{-x+1}$ y(1)= 0 then C = e.		
Part B	Particular solution : $y = 1 + (1-2x)e^{-x+1}$		
1	$\lim_{x \to -\infty} g(x) = 1 \text{ then } y = 1 \text{ is an horizontal asymptote }.$		
	$g'(x) = (2x - 3)e^{-x+1}$		
	$\begin{bmatrix} x & 0 & \frac{3}{2} & +\infty \end{bmatrix}$		
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		1.5	
	1 - 1	1.3	
	g(x) = -0.2		
	g(1) = 0 then 1 is a root.		
3	$g(1) = 0 \text{ then } 1 \text{ is a root.}$ $g(2.25) = -2.77 \cdot 10^{-3}$	1	
	8 (2.20) 2.77-10		

	$g(2.26) = 1.54 \cdot 10^{-3}$		
	g is continuous and strictly decreasing on [2,25; 2,26] then α is a root. $g(\alpha) = 0$ if and only if $e^{\alpha - 1} = 2\alpha - 1$.		
4	$g(\alpha) \le 0$ if and only if $x \in [1, \alpha]$.	1	
5	$g(x^2) \le 0$ if and only if $x^2 \in [1,\alpha]$, if and only if $x \in [1,\alpha]$.	1.5	
6	$A = \int_{1}^{2} \left[y_{(\Delta)} - g(x) \right] dx = \int_{1}^{2} \left[-(1 - 2x)e^{-x+1} \right] dx$ With integration by part: $\int_{1}^{2} -(1 - 2x)e^{-x+1} dx = 3 - \frac{5}{e} \approx 1.1606$ $A = 1,16u^{2}.$	1	
partie C			
1	f(-x) + f(x) = 2, and f is centered at 0. I(0,1) is center of symmetry of the curve.	0.5	
2	$\lim_{x \to +\infty} f(x) = +\infty \text{ et } \lim_{x \to +\infty} [f(x) - y_{(d)}] = 0$ $f(x) - y_{(d)} = x e^{-x^2 + 1} .$ $x e^{-x^2 + 1} > 0 \text{ if } x > 0 \text{ then } (\Gamma) \text{ is above (d).}$ $x e^{-x^2 + 1} = 0 \text{ if } x = 0 \text{ then } (\Gamma) \text{ intersects (d).}$ $x e^{-x^2 + 1} < 0 \text{ then } (\Gamma) \text{ is below (d).}$	1	
3	$f'(x) = g(x^{2})$ $f(\sqrt{\alpha}) = 1 + \frac{2\alpha\sqrt{\alpha}}{2\alpha - 1}.$	0.5	

4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
.5	2 -18	1.5
6.a	$U_0 = \int_0^1 1 dx = 1.$	0.5
6.b	$U_n = \int_0^1 (1 + nxe^{-(nx)^2 + 1}) dx = 1 + \int_0^1 (nxe^{-(nx)^2 + 1}) dx$ Let $v = -(nx)^2 + 1$, then $dv = -2n^2x dx$, $nxdx = -\frac{dv}{2n}$. $U_n = 1 + \int_1^{-n^2 + 1} -e^v \frac{dv}{2n} = 1 - \frac{1}{2n} \left(e^{-n^2 + 1} - e \right).$ $\lim_{n \to +\infty} U_n = 1$	1