امتحانات الثههادة الثانويـة العامـة
وزارة التربية والتعليم العالثي
فرع علوم الحياة
المديريـة العامـة للتربيبة
دائرة الامتحانـات
مسابقة في مـادة الكيمياء: ساعتان

This Exam Includes Three Exercises. It Is Inscribed on Three Pages Numbered From 1 to 3. The Use of A Non-programmable Calculator Is Allowed

Answer the Three Following Exercises:

First Exercise (6 points)
 \section*{From Milk to Dipeptide}

Lactose, main carbohydrate of milk, of molecular formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$, degrades to give lactic acid of condensed structural formula: $\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{C}-\mathrm{OH}$.

Given:

- Molar mass of lactic acid: $\mathrm{M}=90 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
- Milk is fresh when the concentration of lactic acid is lower than 1.8 g. L^{-1}
- Milk curdles when the concentration of lactic acid exceeds 5 g.L ${ }^{-1}$

I- Study of the Condensed Structural Formula of Lactic Acid

Rewrite on the answer sheet the condensed structural formula of lactic acid.
1- Circle the two functional groups in the molecule of lactic acid and give their corresponding names.
2- Give the systematic name of lactic acid.
3- Justify the existence of two enantiomers of lactic acid. Represent these two enantiomers according to Cram's representation.

II- Titration of Lactic Acid in Milk

The lactic acid (weak acid noted as HA) in 20 mL of a milk is titrated with a sodium hydroxide solution of concentration $\mathrm{C}_{\mathrm{b}}=5 \times 10^{-2}$ mol. L^{-1}. Equivalence point is reached when the added volume of sodium hydroxide solution is $\mathrm{V}_{\mathrm{bE}}=11.9 \mathrm{~mL}$.

1- Write the equation of the titration reaction.
2- Calculate the concentration of lactic acid in the studied milk.
3- Deduce if this milk can be considered as fresh or curdled milk.

III- From Lactic Acid to Dipeptide

An alcohol $\mathrm{R}-\mathrm{OH}$, when treated with hydrogen chloride, gives a chlorinated product $\mathrm{R}-\mathrm{Cl}$ according to the equation of the following reaction:

$$
\mathrm{R}-\mathrm{OH}+\mathrm{HCl} \rightarrow \mathrm{R}-\mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}
$$

Compound $\mathrm{R}-\mathrm{Cl}$ reacts with ammonia to give an amine according to the following equation:

$$
\mathrm{R}-\mathrm{Cl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{R}-\mathrm{NH}_{2}+\mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}
$$

1- Referring to the above reactions, write the equations of the reactions that permit to pass from lactic acid to 2-amino propanoic acid.
2- Write the equation of the condensation reaction that permits to give the dipeptide from 2-amino propanoic acid.

Second Exercise (7 points)
 An aldehyde: Ethanal

Ethanal is an organic compound highly used in chemical industry
Ethanal is used in the preparation of ethanol, ethanoic acid, certain organic solvents, pharmaceutical products,
The melting and the boiling points of ethanal are respectively: $\theta_{f}=-123^{\circ} \mathrm{C}$ and $\theta_{b}=21^{\circ} \mathrm{C}$.

I- Some Properties of Ethanal

1- Specify the physical state of ethanal at $18^{\circ} \mathrm{C}$.
2- Indicate a chemical test to identify the reducing character of ethanal and give the expected corresponding observation.
3- Using condensed structural formulas, write the equations of the reactions that permit to prepare ethyl ethanoate from ethanal.

II- Kinetic of the Decomposition Reaction of Ethanal

In the gaseous phase, ethanal decomposes at high temperature $\mathrm{T}=780 \mathrm{~K}$, according to the equation of the following reaction: $\quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{CO}(\mathrm{g})$
The kinetic study of this reaction is carried out by introducing n_{0} mol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ in a closed evacuated container of constant volume V. The total pressure P_{t} that predominates in the container is measured in terms of time (t . This study gives the following results at $\mathrm{T}=780 \mathrm{~K}$.

$\mathrm{t}(\mathrm{min})$	0	5	10	15	20	30	40	50	60	80	100
$\mathrm{P}_{\mathrm{t}}\left(10^{3} \mathrm{~Pa}\right)$	24.0	28.0	30.8	33.0	34.8	37.4	38.8	40.0	41.0	42.4	43.2

1- Give the expression of the total number of moles of the gaseous mixture, n_{t}, in terms of n_{0} and x , where x represents the number of moles of CH_{4} formed at instant t .
2- Interpret the increase of the pressure P_{t} with time.
3- Calculate the total pressure, P_{t}, in the container at the end of the reaction.
4- Trace, on the graph paper, the curve that represents the variation of the pressure P_{t} in terms of time (t): $\mathrm{P}_{\mathrm{t}}=\mathrm{f}(\mathrm{t})$.
Take the following scale: abscissa (1 cm for 10 min); ordinate (1 cm for $4 \times 10^{3} \mathrm{~Pa}$).
5- Determine, graphically, the half-life of the reaction.

Third Exercise (7 points)

Dilution of a Weak Acid Solution

Chloroacetic acid is a weak acid which reacts with water according to the following equation:

$$
\mathrm{CH}_{2} \mathrm{ClCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{2} \mathrm{ClCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

I- Study of a Solution of this Acid

100 mL of a solution (S) are prepared by dissolving 0.01 mol of chloroacetic acid in distilled water.
The pH of this solution is 1.93 .
1- Calculate the concentration C of chloroacetic acid in solution (S).
2- Establish the following relation: $\alpha=\frac{10^{-p H}}{C}$ where α represents the degree of dissociation of chloroacetic acid in water. Calculate α.
3- Show that the pK_{a} of the pair chloroacetic acid/chloroacetate ion is close to 2.81 .

II- Shape of the Curve of the Titration of (S) with a Strong Base

A volume $\mathrm{V}=20 \mathrm{~mL}$ of solution (S) is titrated with a sodium hydroxide solution of concentration $\mathrm{C}_{1}=0.1$ mol. L^{-1} by using a pH -meter.

1- Calculate the volume V_{bE} of sodium hydroxide solution added to reach the equivalence point.
2- Find the coordinates of the half-equivalence point.
3- The pH of the obtained mixture is equal to:
7.78 at equivalence and 12.50 upon the addition of 40 ml of the basic solution.

Draw the shape of the curve $\mathrm{pH}=\mathrm{f}\left(\mathrm{V}_{1}\right),\left(\mathrm{V}_{1}\right.$ is the volume of the basic solution added to carry out this titration and varies between 0 and 40 mL), using the coordinates of the four points previously found.
Take the following scale:
abscissa (1 cm for 2 mL); ordinate (1 cm for 1 unit of pH)

III- Effect of dilution on solution (S)

A sample of solution (S) is diluted 10 times to prepare a solution (S^{\prime}). The measured pH of solution (S^{\prime}) is 2.53 .

1- Calculate the concentration C^{\prime} of chloroacetic acid in solution (S^{\prime}).
2- Deduce the effect of dilution of solution (S) on the degree of dissociation of chloroacetic acid in water.
3- A new titration is carried out, using a pH -meter, by adding progressively a sodium hydroxide solution of concentration $0.01 \mathrm{~mol}_{\mathrm{L}}{ }^{-1}$ into a beaker containing 20 ml of solution (S^{\prime}). Justify that the obtained value of pH at the equivalence point, in this case, is between 7.00 and 7.78.

Expected Answe		
		Carboxyl grou
2- The systematic name of lactic acid is 2-hydroxypropanoi 3- Carbon (2) in the carbon chain is attached to four diff atoms or groups of atoms: H ; CH_{3}; OH ; and COOH . So carbon (2) is called a and there are two enanatiomers for lactic acid shown follows:		

II-
1- The equation of the titration reaction is:
$\mathrm{HA}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{A}^{-}$
2- At equivalence, number of moles of lactic acid in 20 ml of milk is equal to the number of moles of the hydroxide ions in V_{bE}.
Or $\mathrm{n}_{\text {mol }}=\mathrm{C}_{\text {in mol. } \mathrm{L}^{-1}} \times \mathrm{V}_{\text {in } L \text { of solution }}$ so: $\mathrm{C}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{C}_{\mathrm{b}} \mathrm{V}_{\mathrm{bE}}$
$\mathrm{C}_{\mathrm{a}}=\frac{5 \times 10^{-2} \times 11.9}{20}=2.925 \times 10^{-2} \mathrm{~mol} . \mathrm{L}^{-1}$
3- The concentration of lactic acid in milk in $\mathrm{g} \cdot \mathrm{L}^{-1}$ is:
$C=2.925 \times 10^{-2} \times 90=2.63 \mathrm{~g} . \mathrm{L}^{-1}$.
Since $1.8<2.63<5$ so this milk is not fresh and does not curdle .
III-
1- The equations of the reactions are :

0.5
0.25×2
Explanation 0.25

2- The equation of the condensation reaction is:

Second exercice (7 points)

An Aldehyde, Ethanal

Expected Answer	Mark	Comments	
I-	At $18^{\circ} \mathrm{C}$, ethanal is in the liquid state since its temperature is	0.5	0 without explanation between the melting point $-123^{\circ} \mathrm{C}$ and the boiling point $21^{\circ} \mathrm{C}$.
2-Ethanal is a reducing agent Fehling solution test gives a red-brick precipitate with ethanal This identifies the reducing character of	0.25×2	Any other correct chemical test is	

ethanal.
3- The equations of the reactions that permit to pass from ethanal to ethyl ethanoate are:
$\underset{\|}{\mathrm{O}} \underset{\substack{\mathrm{C}}}{\mathrm{C}}-\mathrm{H}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}-\underset{\sim}{\mathrm{C}}-\mathrm{OH}$
$\mathrm{CH}_{3}-\mathrm{C}-\mathrm{H}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
II
$\underset{\underset{\sim}{\mathrm{O}}}{\mathrm{CH}_{3}-\mathrm{O}}-\mathrm{OH}+\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \rightleftharpoons \mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$
II-
1- The equation of the reaction is :

	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})$	\rightarrow	$\mathrm{CH}_{4}(\mathrm{~g})$	+	$\mathrm{CO}_{(\mathrm{g})}$
$\mathrm{t}=0$	n_{0}		0	0	$\mathrm{n}_{\mathrm{t}}=\mathrm{n}_{0}$
t	$\mathrm{n}_{0}-\mathrm{x}$		x		x
n	$\mathrm{n}_{\mathrm{t}}=\mathrm{n}_{0}+\mathrm{x}$				

2- According to the equation of state of an ideal gas $P V=n R T$, P_{t} is directly proportional to n_{t} since $T=$ constant and $V=$ constant,
so P_{t} increases as n_{t} increases with time
3- At the end of the reaction, we have : $n_{t \infty}=2 n_{0}$
then $\mathrm{P}_{\mathrm{t}} \infty=2 \mathrm{P}_{0}=2 \times 24 \times 10^{3} \mathrm{P}_{\mathrm{a}}=48 \times 10^{3} \mathrm{P}_{\mathrm{a}}$

5- the half-life of the reaction is the time needed for half the number of moles of ethanal to be decomposed.
$P_{t 1 / 2}=\frac{3}{2} P_{0}=36 \times 10^{3} \mathrm{~Pa}$. Graphically $: t_{1 / 2}=25 \mathrm{~min}$.
Third exercice (7 points) Dilution of a solution of a weak Acid

Expected Answer			
1-			
1- The concentration of a solution is given by			
$\frac{0.01}{0.1}=0.1 \mathrm{~mol}^{-\mathrm{L}^{-1}} .$			
2- According to the equation of the reaction of the acid with w			
$\mathrm{CH}_{2} \mathrm{ClCOOH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{2} \mathrm{ClCOO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$			
$\mathrm{t}=0$	C	0	0
	$\mathrm{C}(1-\alpha)$	$\mathrm{C} \alpha$	$\mathrm{C} \alpha$
We deduce : $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{C} \alpha$. so $\alpha=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{C}=\frac{10^{-p H}}{C}=0.12$			

3- The constant K_{a} is shown by the expression :
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \cdot\left[\mathrm{CH}_{2} \mathrm{ClCOO}^{-}\right]}{\left[\mathrm{CH}_{2} \mathrm{ClCOOH}\right]}=\frac{\left(10^{-1.93}\right)^{2}}{0.1-10^{-1.93}}=10^{-2.81}$ and $\mathrm{pK}_{\mathrm{a}}=2.81$.
II-
1- At equivalence: n chloroaceticc acid in $20 \mathrm{~mL}=\mathrm{n} \mathrm{OH}^{-}$added
So: $\mathrm{V}_{\mathrm{bE}}=\frac{C_{\mathrm{A}} \cdot V}{C_{1}}=\frac{0.1 . \times 20}{0.1}=20 \mathrm{~mL}$.
The coordinates of the half-equivalence point E^{\prime} are :
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=2.81$ and $\mathrm{V}=\frac{V_{b E}}{2}=10 \mathrm{~mL}$.
2- The curve admits two inflection points.
$E(20-7.78)$ and $E^{\prime}(10-2.81)$ and passes through the two points $A(0-1.93)$ and $B(40-12.5)$

1- In dilution the number of moles of solute does not change $\mathrm{C}^{\prime}=\mathrm{C} / 10=0.01 \mathrm{~mol} . \mathrm{L}^{-1}$.
2- $\alpha^{\prime}=\frac{10^{-2,53}}{10^{-2}}=0.295>\alpha$. Dilution increases the degree of dissociation of chloroethanoic acid.
3- At equivalence, the major species are the same as the preceding titration. Na^{+}is a spectator ion and $\mathrm{CH}_{2} \mathrm{ClCOO}^{-}$has basic character but with a lower concentration than before ; the pH remains greater than 7 but less than 7.78.

