دورة سنة ٢٠٠٥ الاستثنائية

		-
الإسع	مسابقة في مادة الرياضيات	عدد المسائل: اربع
	المدة: ساعتان	
الرقم:		

ملاحظة : يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2 points)

The production of shirts, in a certain factory during the last six years, is distributed as shown in the following table:

Rank of the year x _i	1	2	3	4	5	6
Production y_i (in thousands)	34.6	35.8	38.8	40.5	41.5	46.1

The line $D_{y/x}$ of regression, of y in terms of x, has the equation y = 2.18x + b.

- 1) Determine the coordinates of the point G, the center of gravity (mean point) of the scatter plot associated to the given distribution $(x_i; y_i)$, and deduce the value of b.
- 2) Estimate the production of this factory for the year of rank 10.

II- (4 points)

In order to examine his students, a mathematics teacher placed 30 identical cards in a bag : 18 of these cards each carries one question of statistics, while each of the remaining cards carries an algebra question.

A student draws randomly one card from this bag and answers the question written on this card.

The probability that the student answers correctly a statistics question is 0.7, and the probability that he answers correctly an algebra question is 0.5.

Consider the following events:

- S : « The drawn card carries a statistics question ».
- A : « The drawn card carries an algebra question ».
- C : « The student answers the drawn question correctly ».
- 1) Calculate the following probabilities : $P(S \cap C)$, $P(A \cap C)$ and P(C).
- 2) The student answered the chosen question correctly, what is the probability that this question is an algebra question ?
- 3) The teacher assigns marks as follows :
 - 5 for a correct answer in statistics.
 - n for a correct answer in algebra .
 - -2 for an incorrect answer.

Let X be the random variable that designates the mark obtained by the student.

- a- Determine the probability distribution of X.
- b- Calculate E(X), the expected value of X, in terms of n.
- c- Find the value of n for which E(X) = 2.54.

III- (4 points)

A merchant borrows a loan of 20 000 000 LL from a certain bank.

The annual rate of interest charged is 6 %, compounded monthly.

To pay back this loan, he decides to pay 500 000 LL to the bank at the end of every month. Designate by U_n the amount of the debt at the end of the n^{th} month.

- 1) Verify that $U_1 = 19600000$.
- 2) Establish that $U_{n+1} = 1.005 U_n 500\ 000$.
- 3) Consider the sequence (V_n) that is defined by $V_n = U_n 100\ 000\ 000$.
 - a- Prove that (V_n) is a geometric sequence of ratio 1.005 and determine V_1 .
 - b- Express V_n in terms of n, and deduce U_n in terms of n.
 - c- Prove that this debt is paid back at the end of 45 months.
 - d- Determine the value of the last amount that is to be paid by the merchant at the end of the 45th month.

IV- (10 points)

Let f be the function that is defined, on [0; + ∞ [, by : f(x) = x + $\frac{1}{2}$ + e^{1-x}

and designate by (C) its representative curve in an orthonormal system (O; \vec{i} , \vec{j}).

Part A

1) a- Calculate $\lim_{x \to +\infty} f(x)$.

b- Prove that the line (d) of equation $y = x + \frac{1}{2}$ is an asymptote of (C).

- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Draw (d) and (C).
- 4) Calculate the area of the region that is bounded by the curve (C), its asymptote (d) and the two lines of equations x = 0 and x = 1.

Part B

A factory manufactures batteries and the total cost of production, in millions LL, is expressed by $C(x)=x+\frac{1}{2}+e^{1-x}$ where x is the number, in hundreds, of batteries

produced $(0 \le x \le 5)$.

- 1) Calculate the fixed costs.
- 2) Calculate the total cost of manufacturing 500 batteries.
- 3) Each battery is sold for 20 000 LL, but only 90 % of the production is sold. a- Show that the revenue function is expressed by R(x) = 1.8x.
 - b- Represent graphically the function R, in the system (O; i, j).
 - c-Justify graphically that the equation R(x) = C(x) has a unique solution α and verify that $1.43 < \alpha < 1.44$.
 - d- What does α represent to the factory ?
 - e- Indicate the minimal number of batteries that should be manufactured in order that the factory achieves a profit.

S.E-MATHS 2nd session - 2005

Q1	Short Answers	М
1	$\overline{X} = 3.5$, $\overline{Y} = 39.55$; the center of gravity is G(3.5; 39.55) y = 2.18x + b, the regression line passes through G; 39.55 = 2.18×3.5 + b; b = 31.92	2
2	$y = 2.18 \times 10 + 31.92 = 53.72$ ie 53720 shirts.	1 1/2

Q2	Short Answers	Μ
1	$\begin{array}{c c} 0.7 & C \\ 18/30 & S & 0.3 & \overline{C} \\ 12/30 & A & 0.5 & \overline{C} \\ \end{array} \end{array} \begin{array}{c} P(S \cap C) = (18/30) \times (7/10) = 21 / 50 \\ P(A \cap C) = (12/30) \times (1/2) = 1/5 \\ P(C) = P(A \cap C) + P(S \cap C) = 1/5 + 21/50 = 31/50 \end{array}$	1 1⁄2
2	$P(A/C) = \frac{P(A \cap C)}{P(C)} = 1/5 \div 31/50 = 10/31$	1
3.a	$\begin{array}{ c c c c c c c }\hline x_i & -2 & n & 5 \\ \hline p_i & 19/50 & 1/5 & 21/50 \\ \hline \end{array}$	2
3.b	E(X) = -38 / 50 + n/5 + 105/50 = 1.34 + 0.2n	1 1/2
3.c	E(X) = 2.54; $1.34 + 0.2n = 2.54$; $n = 6$.	1

Q2	Short Answers	М
1	$U_1 = (20\ 000\ 000 \times 0.06)/12\ + 20\ 000\ 000\ - 500\ 000 = 19\ 600\ 000$	1⁄2
2	$U_{n+1} = (U_n \times 0.06) / 12 + U_n - 500\ 000 = 1.005\ U_n - 500\ 000$	1
3.a	$\frac{V_{n+1}}{V_n} = \frac{U_{n+1} - 100\ 000\ 000}{U_n - 100\ 000\ 000} = \frac{1.005U_n - 100500\ 000}{U_n - 100\ 000\ 000}$ $= \frac{1.005(U_n - 100\ 000\ 000)}{U_n - 100\ 000\ 000} = 1.005$	2
	$V_1 = U_1 - 100\ 000\ 000 = 19\ 600\ 000 - 100\ 000\ 000 = -\ 80\ 400\ 000$	
3.b	$ \begin{aligned} V_n &= V_1 \times q^{n-1} = -80400000 \times (1.005)^{n-1} \\ U_n &= -80400000 \times (1.005)^{n-1} +100000000 \end{aligned} $	1 1⁄2
3.c	U _n = 0; -80 400 000× (1,005) ⁿ⁻¹ + 100 000 000 = 0 (1.005) ⁿ⁻¹ = 1000 / 804 ; (n - 1)ln(1.005) = ln(1000/804) ; n - 1 = 43.74 n = 44.74 ie 45 months are needed. ▼ or : C = R. $\frac{1 - (1 + i)^{-n}}{i}$; 20 000 000 = 500 000× $\frac{1 - (1 + \frac{0.06}{12})^{-n}}{\frac{0.06}{12}}$; n = 44.74	1
3.d	$U_{44} = -80\ 400\ 000 \times (1.005)^{43} + 100\ 000\ 000 = 368\ 491.\ 879$ The paid amount is 368 491. 879(1.005) = 370\ 334.\ 338\ 4\ LL ▼ or : $U_{45} = -80\ 400\ 000 \times (1.005)^{44} + 100\ 000\ 000 = -129\ 665.\ 661$ The paid amount is 500\ 000 - 129\ 665.\ 661 = 370\ 334.\ 339	1

Q4	Short Answers	
A1.a	$\lim_{x \to +\infty} f(x) = +\infty + 0 = +\infty$	1⁄2
A1.b	$\lim_{x \to +\infty} (f(x) - x - \frac{1}{2}) = \lim_{x \to +\infty} e^{1-x} = 0$, then the line of equation $y = x + \frac{1}{2}$ is an asymptote of (C).	1
A2.	$\begin{array}{c c} f'(x) = 1 - e^{1-x} \\ f'(x) > 0 \text{ for } 1 > e^{1-x} \\ 0 > 1 - x \ ; \ x > 1. \end{array} \qquad \begin{array}{c c} x & 0 & 1 & +\infty \\ \hline f'(x) & - & 0 & + \\ \hline f(x) & \frac{1}{2} & & \\ $	2 1/2
A.3	y y y y y y y y y y y y y y	2
A.4	$A = \int_{0}^{1} (x + \frac{1}{2} + e^{1-x} - x - \frac{1}{2}) dx = \int_{0}^{1} e^{1-x} dx = -\left[e^{1-x}\right]_{0}^{1} = -(1-e) = (e-1)u^{2}$	
B.1	Fixed costs = C (0) = $\frac{1}{2}$ + e = 3.218 281 ie 3 218 281 LL	
B.2	500 batteries correspond to $x = 5$; $f(5) = 5 + \frac{1}{2} + e^{1-5} = 5 \cdot 518 \cdot 315$ ie 5 518 315 LL	
B.3.a	The selling price of a unit is $20\ 000 \times 100 = 2\ 000\ 000$, ie 2 million LL. Number of sold units for a production of x hundred batteries is $0.9x$ $R(x) = 2 \times 0.9x = 1.8x$	
B.3.b	b See figure.	
B.3.c	The two curves intersect at a unique point then the equation $R(x) = C(x)$ has a unique solution α . C(1.43) = 2.580; $R(1.43) = 2.574$; $R(1.43) < C(1.43)C(1.44) = 2.584$; $R(1.44) = 2.592$; $R(1.44) > C(1.44)Then 1.43 < \alpha < 1.44.$	2
B.3.d	α is the number, in hundreds of batteries, to be produced by the factory in order to achieve zero profit (Break even value)	1 1/2
B.3.e	e The factory starts to make a profit at a production of 144 batteries.	