دورة سنة ٢٠٠٥ العادية	امتحانات الشبهادة الثانوية العامة	وزارة التربية والتعليم العالي
	فرع علوم الحياة	المديرية العامة للتربية
	, -	دائرة الامتحانات
الاسم :	مسابقة في الفيزياء	
ره شم	المدة: ساعتان	

Cette épreuve, formée de trois exercices obligatoires, est constituée de quatre pages numérotées de 1 à 4.

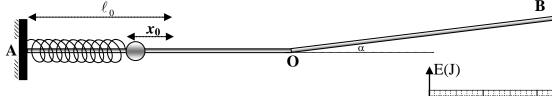
Les calculatrices non programmables sont autorisées.

Premier exercice : (6 ½ pts) Détermination de la valeur d'une force de frottement

Un solide (S) de masse m = 200 g peut se déplacer sur un rail AOB situé dans un plan vertical. Ce rail est constitué de deux parties : l'une AO rectiligne horizontale et l'autre OB rectiligne et inclinée d'un angle α sur l'horizontale (sin $\alpha = 0,1$). Sur la partie AO, le mouvement de (S) se fait sans frottement et, sur la partie OB, (S) subit l'action d'une force de frottement \vec{f} supposée constante et parallèle au déplacement. Le but de l'exercice est de déterminer la valeur f de la force de frottement \vec{f} .

A- Lancement du solide

Pour lancer ce solide sur la partie AO, on utilise un ressort de raideur k=320 N/m et de longueur à vide ℓ_0 ; une des extrémités du ressort est fixée en A à un support. On comprime le ressort de x_0 ; on pose le solide contre l'extrémité libre du ressort et on libère l'ensemble. Quand le ressort reprend sa longueur à vide ℓ_0 , le solide quitte le ressort à la vitesse $\overrightarrow{V_0}$ de valeur $V_0=8$ m/s, poursuit son mouvement en glissant sur le rail horizontal et aborde au point O la partie inclinée OB.



- 1) Déterminer la valeur de x_0 .
- 2) Le solide arrive au point O avec la vitesse de valeur $V_0 = 8$ m/s. Justifier.

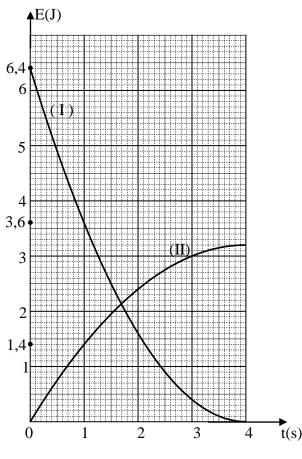
B- Mouvement du solide sur la partie inclinée OB

(S) aborde en O la partie inclinée OB avec la vitesse de valeur V_0 à la date $t_o = 0$. Un système approprié permet de tracer, en fonction du temps, les courbes donnant les variations de l'énergie cinétique E_C du solide et de l'énergie potentielle de pesanteur E_{PP} du système (solide - Terre).

Ces courbes sont représentées sur la figure ci-contre entre les dates $t_o = 0$ et $t_4 = 4$ s, à l'échelle :

- 1 division sur l'axe des temps correspond à 1 s
- 1 division sur l'axe des énergies correspond à 1 J. Le niveau de référence de l'énergie potentielle de pesanteur est le plan horizontal passant par le point O.

Prendre $g = 10 \text{ m} / \text{s}^2$.



- 1) La courbe I représente la variation, en fonction du temps, de l'énergie cinétique E_C. Pourquoi ?
- 2) En utilisant les courbes,
 - **a** préciser, en le justifiant, la forme de l'énergie du système à la date $t_4 = 4$ s ;
 - b- déterminer la distance maximale parcourue par le solide sur la partie OB;
 - c-i. compléter le tableau avec les valeurs de l'énergie mécanique E_m pour chaque date t ;

t (s)	0	1	2	3	4
E_{m} (J)		5			

- ii. justifier l'existence de la force de frottement \vec{f} ;
- iii. calculer la variation de l'énergie mécanique du système entre les dates $t_0 = 0$ et $t_4 = 4$ s ;
- iv. déterminer f.

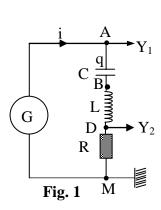
<u>Deuxième exercice</u>: (7 pts) **Détermination de l'inductance d'une bobine**

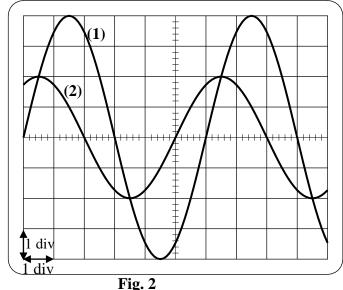
Dans le but de déterminer l'inductance L d'une bobine de résistance négligeable, on place cette bobine dans un circuit comportant en série, un conducteur ohmique de résistance $R=10~\Omega$, un condensateur de

capacité $C = \frac{160}{\sqrt{3}} \mu F$ et un générateur délivrant, entre ses bornes, une tension alternative sinusoïdale

 $u_{AM} = U_m \sin{(2\pi f t)}$, de fréquence réglable (figure 1). Le circuit est alors parcouru par un courant alternatif sinusoïdal d'intensité i.

Un oscilloscope branché dans le circuit permet de visualiser, sur la voie Y_1 , la tension u_{AM} et, sur la voie Y_2 , la tension u_{DM} .





A) Le générateur est réglé à la fréquence f = 50 Hz.

L'oscillogramme de la figure 2 montre la courbe (1) qui correspond à la tension u_{AM} et la courbe (2) qui correspond à la tension u_{DM} . La sensibilité verticale pour les deux voies est 5 V / division.

Prendre: $\sqrt{3} = 1,73$; $0,32\pi = 1$

- 1) En se référant à l'oscillogramme,
 - a- calculer la tension maximale U_m aux bornes du générateur,

b- montrer que l'expression de la tension u_{DM} s'écrit sous la forme :

$$u_{DM} = 10 \sin (100 \pi t + \frac{\pi}{3})$$
 (u_{DM} en V, t en s).

- 2) a- Déterminer l'expression de i.
 - b- Montrer que l'expression de la tension aux bornes du condensateur peut s'écrire :

$$u_C = u_{AB} = -20\sqrt{3}\cos(100\pi t + \frac{\pi}{3})$$
 (u_{AB} en V)

- **c** Déterminer l'expression de la tension u_{BD} aux bornes de la bobine en fonction de l'inductance L et du temps t.
- 3) La relation $u_{AM} = u_{AB} + u_{BD} + u_{DM}$ est vérifiée quel que soit le temps t. Déduire la valeur de L.
- ${f B}$ Pour s'assurer de la valeur de L obtenue dans la question A-3, on fait varier la fréquence f de la tension délivrée par le générateur, tout en maintenant constante la tension maximale U_m . On remarque que les deux tensions u_{AM} et u_{DM} deviennent en phase lorsque la fréquence est égale à $f_0 = 70,7$ Hz.
- 1) Nommer le phénomène électrique mis ainsi en évidence.
- 2) Retrouver la valeur de L.

Troisième exercice: (6 ½ pts) Radioactivité

Un laboratoire de physique est équipé d'un compteur de radioactivité associé à une source radioactive au césium $^{137}_{55}$ Cs émetteur β^- .

La fiche technique du compteur porte les indications suivantes:

- nucléide : 137₅₅Cs
- demi-vie: T = 30 ans
- activité de la source à la date de fabrication du compteur : $A_0 = 4,40 \times 10^5 \, \text{Bg}$
- énergie du rayonnement bêta : 0,514 MeV
- énergie du rayonnement gamma : 0,557 MeV

Prendre: 1 eV = 1,6 × 10⁻¹⁹ J. 1 u = 931,5 MeV / c^2

Masses des noyaux et particule : $m(C_S) = 136,8773 u$;

$$m (Ba) = 136,8756 u;$$

m (électron) =
$$5.5 \times 10^{-4}$$
 u.

A- Énergie libérée par un noyau de césium

- a- Écrire l'équation de désintégration du césium 137, sachant que le noyau fils est le baryum y Ba.
 Déterminer x et y.
 - **b-** Le baryum ^y **Ba** est obtenu à l'état excité. Écrire l'équation de désexcitation du noyau de baryum.
- 2) a- Calculer, en MeV, l'énergie E libérée au cours de la désintégration d'un noyau de césium.
 - **b** Déduire, en se référant à la fiche technique l'énergie emportée par l'antineutrino sachant que l'énergie cinétique du noyau de baryum est négligeable.

3

B- Activité du césium

- 1) À la rentrée scolaire 2004, on mesure, à l'aide du compteur, l'activité A de la source. On obtient la valeur 3.33×10^5 Bq. Déterminer l'année de fabrication du compteur équipé de sa source sachant que $A = A_0 e^{-\lambda t}$, λ étant la constante radioactive du césium.
- 2) L'activité de la source ne varie pratiquement pas au cours d'une séance d'une heure . En se basant sur la définition de l'activité d'une source radioactive, calculer le nombre n de désintégrations pendant 1 heure.

C- Conséquence de l'utilisation de la source au césium

- 1) En tenant compte des valeurs de E et de n, calculer, en J, l'énergie reçue par un élève, durant une séance d'une heure au laboratoire, sachant que cet élève absorbe 1 % de l'énergie nucléaire libérée.
- 2) Sachant que l'énergie nucléaire maximale que peut supporter l'élève, pendant une heure, est de 1.2×10^{-4} J, vérifier que l'élève ne court aucun risque.

Premier exercice

- **A- 1)** Explication (1/2pt); $\frac{1}{2}k(x_0)^2 = \frac{1}{2}m(V_0)^2$ (1/2 pt) $x_0 = 20 \text{ cm}$ (1/2 pt)
 - 2) La méthode de la conservation de E_m ou $\Sigma \vec{F} = \vec{P} + \vec{N} = \vec{0}$, le mouvement est donc rectiligne uniforme de vitesse égale à la vitesse initiale $V_0 = 8 \text{ m/s} \dots (1/2\text{pt})$
- **B)** 1) A l'instant t= 0, la vitesse du solide est 8m/s, son énergie cinétique est maximale. La courbe I passe par un maximum à cet instant. (1/2pt)
 - 2) a) A la date t = 4 s, $E_C = 0$, l'énergie du système à cette date est une énergie potentielle de pesanteur. (1/2pt)
 - b) La distance maximale correspond à une énergie potentielle de pesanteur maximale sur la courbe II;

 E_{Ppmax} = 3,2 J = mgh_{max} = mg d_{max}sin α , d'où : d_{max}= 16 m (1pt).

t (s)	0	1	2	3	4
$E_{m}(J)$	6,4	5	4	3,4	3,2

- - ii. L'énergie mécanique diminue avec le temps ; ce qui signifie l'existence d'une force de frottement. (1/4pt)

iii.
$$\Delta E_m = 3.2 - 6.4 = -3.2 \text{ J}$$
 (1/2pt)

iv.
$$\Delta E_m = W(\vec{f}) = -f \times d_{max}$$
 (1/2pt)

$$f = \frac{3.2}{16} = 0.2N \tag{1/2pt}$$

Deuxième exercice

A- 1- a) $U_m = 4 \text{ div} \times 5 \text{ V/div} = 20 \text{ V}$ (1/2pt)

b) $U_{DMm} = 2 \text{ div } \times 5 \text{ V/div} = 10 \text{ V}$

Le déphasage entre u_{DM} et u_{AM} est $\varphi_1 = 1 \text{div} \times \frac{2\pi}{6} = \frac{\pi}{2} \text{rad}$

u_{DM} est en avance de phase sur u_{AM}.

$$u_{DM} = 10\sin(100 \pi t + \frac{\pi}{3})$$
 (1 ½ pt)

2) a)
$$u_{DM} = Ri = \sin(100 \pi t + \frac{\pi}{3})$$
 (1/2pt)

b)
$$i = C \frac{du_C}{dt} (1/4pt)$$
 => u_C = primitive de $\frac{1}{C}i$ (1/4pt)
= $-20\sqrt{3} \cos(100\pi t + \frac{\pi}{3})$ (1/4pt)

c)
$$u_{BD} = L \frac{dt}{dt} (1/4pt)$$

= $100 \pi L \cos(100 \pi t + \frac{\pi}{3})$ (1/2pt)
3) La relation $u_{AM} = u_{AB} + u_{BD} + u_{DM}$ s'écrit :

$$20 \sin 100 \pi t = -20 \sqrt{3} \cos(100 \pi t + \frac{\pi}{3}) + 100 \pi L \cos(100 \pi t + \frac{\pi}{3})$$

$$+10\sin(100\,\pi\,t+\frac{\pi}{3})$$
 (1/4pt)

Pour t = 0, on obtient : 0 = - $10\sqrt{3} + 50\pi L + 5\sqrt{3}$. Ainsi : L = 55 mH.

(11/4pt)

B-1) Le phénomène de la résonance d'intensité (1/2pt)

2) A la résonance, :

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$
, ainsi : L ≈ 55 mH. (1pt)

Troisième Exercice

A-1) a)
$$^{137}_{55}$$
Cs $\rightarrow {}^{y}_{x}$ Ba $+ {}^{0}_{-1}$ e $+ {}^{0}_{0}\overline{\nu}$ (1/2pt)
55 = x - 1 => x= 56 ; 137 = y + 0 => y =137 (1/2pt)
b) $^{y}_{x}$ Ba * $\rightarrow {}^{y}_{x}$ Ba $+ \gamma$ (1/2pt)

- 2) a) $E = \Delta m \times c^2$. Avec $\Delta m = m_{avant} m_{après} = m_{Cs} (m_{Ba} + m_{élecron}) = 1,15.10^{-3} \text{ u}$ $\Delta m = 1,15.10^{-3} \times 931,5 \text{ MeV/c}^2 = 1,0712 \text{ MeV/c}^2$. $E = 1,0712 \text{ MeV/c}^{2 \times} \text{ c}^2 = 1,0712 \text{ MeV}$. (1 ½ pt)
- **b**) $E(lib\acute{e}r\acute{e}e) = E(\gamma) + E(\beta^{-}) + E_{C}(Ba) + E({}_{0}^{0}\overline{\nu})$ $1,0712 \text{ MeV} = 0,557 + 0,514 + 0 + E({}_{0}^{0}\overline{\nu}) => E({}_{0}^{0}\overline{\nu}) = 0,0002 \text{ MeV}.$ (1pt)
- **B)** 1) $A = A_0 e^{-\lambda t}$, ainsi $t = \frac{1}{\lambda} \times \ln \frac{A_0}{A} = 12$ ans.

Ainsi la date de fabrication du compteur est la rentrée de l'année 1992. (1/2pt)

- 2) Nombre de désintégrations pendant 1 h = n = $A \times t = 3,33.10^5 \times 3600 = 11988.10^5$ (1/2 pt)
- **C-1**) Energie libérée pendant une heure = $E_1 = E \times$ nombre de désintégrations pendant 1 $h = E \times n = 1,0712 \times 11988.10^5 \text{ MeV} = 12841,5.10^5 \text{ MeV} = 0,2055.10^{-3} \text{J}.$

Energie absorbée par l'élève pendant 1 heure = $E_2 = \frac{0,2055.10^{-3}}{100} = 0,2055.10^{-5} J$ (1 pt)

2) $E_2 < 1.2 \times 10^{-4} J => aucun risque (1/2pt)$