

I - (3 points)

In the complex plane referred to a direct orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$), consider the points E, M and M^{\prime} of respective affixes i, z and z^{\prime}, where $\mathrm{z}^{\prime}=\mathrm{iz}+1+\mathrm{i}$.

1) Find the algebraic form of z^{\prime} when $z=\sqrt{2} e^{i \frac{\pi}{4}}$.
2) Determine the modulus and an argument of z if $z^{\prime}=1+\sqrt{3}+2 i$.
3) Determine the value of z, for which the points M and M ' are confounded .
4) a- Show that $z^{\prime}-i=i(z-i)$.
b- Deduce that when M moves on the circle (C) of center E and radius 3 , then the point M' moves on the same circle.

II - (4 points)

In the space referred to a direct orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{i}}, \vec{j}, \overrightarrow{\mathrm{k}}$), consider :

- the plane (P) of equation $2 x+y-3 z-1=0$;
- the plane (Q) of equation $x+4 y+2 z+1=0$;
- the line (d) defined by : $\left\{\begin{array}{l}x=2 t+1 \\ y=-t-1 \\ z=t\end{array} \quad\right.$ (t is a real parameter).

1) Prove that the line (d) is included in the plane (P).
2) Find an equation of the plane (S) that is determined by the point O and the line (d).
3) Consider the point $\mathrm{E}\left(0 ;-\frac{1}{2} ;-\frac{1}{2}\right)$.

Prove that E is the orthogonal projection of the point O on the line (d).
4) a- Show that the planes (P) and (Q) are perpendicular.
b- Let (D) be the line of intersection of (P) and (Q).
Calculate the distance from E to (D).

III - (5 points)

A certain store sells only jackets, coats and shirts.
During a week, $\mathbf{1 2 0}$ customers were served in this store.
$\mathbf{9 0}$ of those customers bought each one jacket, while the other $\mathbf{3 0}$ customers bought each one coat.
40\% of those who bought jackets bought each also a shirt, while $\mathbf{2 0 \%}$ of those who bought coats bought each also a shirt.

A customer is chosen at random from those $\mathbf{1 2 0}$ customers and is interviewed.

1) Consider the following events :
$\mathrm{J}:$ « the interviewed customer has bought a jacket».
C: « the interviewed customer has bought a coat».
S: « the interviewed customer has bought a shirt».
a- Verify that the probability of the event $\mathrm{S} \cap \mathrm{J}$ is equal to $\frac{3}{10}$.
b- Calculate the following probabilities :
$\mathrm{P}(\mathrm{S} \cap \mathrm{C}), \mathrm{P}(\mathrm{S}), \mathrm{P}(\mathrm{C} / \mathrm{S})$ and $\mathrm{P}(\mathrm{C} / \overline{\mathrm{S}})$.
2) The prices of the clothes in this store are as shown in the following table :

Kind	Jacket	Coat	Shirt
Price in LL	150000	200000	60000

Let X designate the random variable that is equal to the amount paid by a customer. a- Give the four possible values of X .
b- Determine the probability distribution of X .
c- Calculate the mean (expected value) $\mathrm{E}(\mathrm{X})$.
d- Estimate the amount of sales collected by the store during that week.

IV- (8 points)

Consider the function f that is defined, on $I=] 1 ;+\infty\left[\right.$, by $f(x)=x+1-\frac{3 e^{x}}{e^{x}-e}$ and let (C) be its representative curve in an orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}$).

1) a- Prove that the line of equation $x=1$ is an asymptote to (C) .
b- Calculate $\lim _{x \rightarrow+\infty} f(x)$ and show that the line (d) of equation $y=x-2$ is an asymptote to (C).
c- Determine the relative position of (C) and (d) .
2) Prove that $\mathrm{f}^{\prime}(\mathrm{x})>0$ for all values of x in I , and set up the table of variations of f .
3) Prove that the equation $\mathrm{f}(\mathrm{x})=0$ has a unique root α and verify that $2.6<\alpha<2.7$.
4) Draw the curve (C).
5) Designate by (D) the region that is bounded by (C) , the line (d) and the lines of equations $x=3$ and $x=4$.
Calculate $\int_{3}^{4} \frac{e^{x}}{e^{x}-e} d x$ and deduce the area of the region (D).
6) a- Prove that f, on the interval I, has an inverse function g.
b- Prove that the equation $f(x)=g(x)$ has no roots .

L.S.		$\begin{array}{cl}\mathcal{M} \mathcal{A} \mathcal{H} \mathcal{H} & 1^{\text {st }} \text { session } 200 \\ \text { Short Answers }\end{array}$	
Question			M
 I	1	$\mathrm{z}^{\prime}=\mathrm{i}\left(\sqrt{2} e^{i \frac{\pi}{4}}\right)+1+\mathrm{i}=\mathrm{i}(1+\mathrm{i})+(1+\mathrm{i})=2 \mathrm{i}$	1/2
	2	$\begin{aligned} & 1+\sqrt{3}+2 \mathrm{i}=\mathrm{iz}+1+\mathrm{i} ; \quad \mathrm{iz}=\sqrt{3}+\mathrm{i} \quad ; \quad \mathrm{z}=1-\mathrm{i} \sqrt{3} ; \\ & \|\mathrm{z}\|=2 \text { and } \arg (\mathrm{z})=-\frac{\pi}{3} \end{aligned}$	1/2
	3	$\mathrm{z}^{\prime}=\mathrm{z} \text { for } \mathrm{z}=\mathrm{iz}+1+\mathrm{i} ; \quad \mathrm{z}(1-\mathrm{i})=1+\mathrm{i} \quad ; \quad \mathrm{z}=\frac{1+i}{1-\mathrm{i}} ; \mathrm{z}=\mathrm{i} .$	11/2
	4a	$\mathrm{z}^{\prime}-\mathrm{i}=\mathrm{iz}+1=\mathrm{i}(\mathrm{z}-\mathrm{i})$	1/2
	4b	$\left\|\mathrm{z}^{\prime}-\mathrm{i}\right\|=\|\mathrm{i}\|\|\mathrm{z}-\mathrm{i}\|=\|\mathrm{z}-\mathrm{i}\| ; \mathrm{EM}^{\prime}=\mathrm{EM} .$ M moves on the circle (C) , $\mathrm{EM}=3$, then $\mathrm{EM}^{\prime}=3$, thus M^{\prime} moves on the same circle.	1

Question		Short Answers					M
III							
	1a	$\mathrm{P}(\mathrm{S} \cap \mathrm{J})=\mathrm{P}(\mathrm{J}) \times \mathrm{P}(\mathrm{S} / \mathrm{J})=\frac{3}{4} \times \frac{4}{10}=\frac{3}{10}$.					1/2
	1b	$\begin{aligned} & \mathrm{P}(\mathrm{~S} \cap \mathrm{C})=\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\mathrm{~S} / \mathrm{C})=\frac{1}{4} \times \frac{2}{10}=\frac{1}{20} . \\ & \mathrm{P}(\mathrm{~S})=\mathrm{P}(\mathrm{~S} \cap \mathrm{~J})+\mathrm{P}(\mathrm{~S} \cap \mathrm{C})=\frac{6}{20}+\frac{1}{20}=\frac{7}{20} . \\ & \mathrm{P}(\mathrm{C} / \mathrm{S})=\frac{\mathrm{P}(\mathrm{C} \cap \mathrm{~S})}{\mathrm{P}(\mathrm{~S})}=\frac{1 / 20}{7 / 20}=\frac{1}{7} . \\ & \mathrm{P}(\mathrm{C} / \overline{\mathrm{S}})=\frac{\mathrm{P}(\mathrm{C} \cap \overline{\mathrm{~S}})}{\mathrm{P}(\overline{\mathrm{~S}})}=\frac{\mathrm{P}(\mathrm{C}) \times \mathrm{P}(\overline{\mathrm{~S}} / \mathrm{C})}{1-\mathrm{P}(\mathrm{~S})}=\frac{(1 / 4)(8 / 10)}{1-(7 / 20)}=\frac{4}{13} . \end{aligned}$					$11 / 2$
	2a	A customer has bought only one out of the following four choices : only a jacket, only a coat, a jacket and a shirt, a coat and a shirt. $X(\Omega)=\{150000,200000,210000,260000\}$					1/2
	2b	$\begin{gathered} \mathrm{X}=\mathrm{x}_{\mathrm{i}} \\ \mathrm{P}_{\mathrm{i}} \end{gathered}$	150000 $\frac{3}{4} \times \frac{6}{10}=\frac{18}{40}$	200000 $\frac{1}{4} \times \frac{8}{10}=\frac{8}{40}$	210000 $\frac{3}{4} \times \frac{4}{10}=\frac{12}{40}$	260000 $\frac{1}{4} \times \frac{2}{10}=\frac{2}{40}$	$11 / 2$
	2c	$E(X)=\frac{10000}{40}(15 \times 18+20 \times 8+21 \times 12+26 \times 2)=183500$					$1 / 2$
	2d	The sales amount during that week is equal to the product of the mean amount by the number of the customers :$183500 \times 120=22020000 \text { LL. }$					1/2

Question		Short Answers	M
Q 1 1a		$\lim _{\substack{x \rightarrow 1 \\ x>1}} e^{x}=e ; \lim _{\substack{x \rightarrow 1 \\ x>1}}\left(e^{x}-e\right)=0^{+} ; \lim _{\substack{x \rightarrow 1 \\ x>1}} f(x)=-\infty$ The line of equation $\mathrm{x}=1$ is an asymptote to (C).	1/2
IV	1b	$\begin{aligned} & \lim _{x \rightarrow+\infty} \frac{3 e^{x}}{e^{x}-e}=3 \text {, consequently } \lim _{x \rightarrow+\infty} f(x)=+\infty ; \\ & \lim _{x \rightarrow+\infty}[f(x)-(x-2)]=\lim _{x \rightarrow+\infty}\left[3-\frac{3 e^{x}}{e^{x}-e}\right]=0 \end{aligned}$ The line (d) of equation $\mathrm{y}=\mathrm{x}-2$ is an asymptote to(C).	1
	1c	$\begin{aligned} & f(x)-(x-2)=3-\frac{3 e^{x}}{e^{x}-e}=\frac{-3 e}{e^{x}-e} \\ & x>1, e^{x}>e \text {, then } f(x)-(x-2)<0 \text { so (C) is below (d). } \end{aligned}$	1/2
	2		1
	3	On I, f is continuos and changes signs, thus the equation $f(x)=0$ has at least one root α. But since f is strictly increasing on I ,then α is unique. $f(2.6)=-0.158 \text { and } f(2.7)=0.0294 \text {, thus } 2.6<\alpha<2.7$	1
	4		1
	5	- $\int_{3}^{4} \frac{e^{x}}{e^{x}-e} d x=\left[\ln \left(e^{x}-e\right)\right]_{3}^{4}=\ln \left(e^{4}-e\right)-\ln \left(e^{3}-e\right)=\ln \frac{e^{3}-1}{e^{2}-1}$. - $\mathscr{t}=\int_{3}^{4}(x-2-f(x)) d x=\int_{3}^{4}\left(-3+3 \frac{\mathrm{e}^{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}-\mathrm{e}}\right) \mathrm{dx}=[-3 \mathrm{x}]_{3}^{4}+3 \ln \frac{\mathrm{e}^{3}-1}{\mathrm{e}^{2}-1}$ $=\left[-3+3 \ln \frac{\mathrm{e}^{3}-1}{\mathrm{e}^{2}-1}\right] \mathrm{u}^{2} \approx 0.28 \mathrm{u}^{2}$	$11 / 2$
	6a	On I, f being continuous and strictly increasing, it has an inverse function g.	1/2
	6b	The equation $f(x)=g(x)$ is equivalent to $f(x)=x$, so $1-\frac{3 e^{x}}{e^{x}-e}=0$ gives $2 \mathrm{e}^{\mathrm{x}}=-\mathrm{e}$ which is impossible. - OR : graphically , the curve (C) does not cut the first bisector $\mathrm{y}=\mathrm{x}$.	1

