

I- (4 points)

The table below shows the amount of advertising expenses x (in millions LL) of a certain car factory, and the corresponding number y of tens of cars sold.

x_{i}	10	12	14	14.5	15
y_{i}	20	25	30	35	40

1) Calculate the means \bar{X} and \bar{Y} of the variables x and y.
2) Represent graphically the scatter plot of the points ($x_{i} ; y_{i}$) as well as the center of gravity $\mathrm{G}(\bar{X} ; \bar{Y})$, in a rectangular system.
3) Calculate the linear correlation coefficient r and give an interpretation of the value thus obtained.
4) Determine an equation of $D_{y / x}$, the line of regression of y in terms of x, and draw this line in the preceding system.
5) Suppose that the above pattern remains valid when this factory spends 18000000 LL on advertising.
a- Estimate in this case the number p of cars to be sold (give answer to the nearest unit).
b- The average cost of production of a car is 15000000 LL .
Each car is sold for 20000000 LL .
Estimate the profit achieved by this factory upon selling these p cars.

II - (4 points)

An urn contains 9 balls: 3 white, 4 red and 2 black.
A- Three balls are drawn randomly and successively from this urn, without replacement.

1) What is the probability that the three drawn balls are all white ?
2) What is the probability that the third drawn ball is the only white ball among the three drawn balls.

B- In all what follows, three balls are drawn randomly and simultaneously from the given urn.

1) Let C be the event : "the three drawn balls have the same colour".

Show that the probability of C is equal to $\frac{5}{84}$
2) Designate by X the random variable that is equal to the number of black balls obtained.
a- Determine the probability distribution of X
b- Calculate $\mathrm{E}(\mathrm{X})$, the expected value of X .

III - (4 points)

A statistical study of the population of a certain village revealed the following information :

- The population of this village was 6000 at the beginning of the year 2000.
- The annual increase in the population of this village is 2%.
- 200 persons leave this village permanently every year (moving to the town, immigrating to other countries, ...)
Designate by U_{n} the number of inhabitants in this village in the year $(2000+n)$.

1) Let $U_{0}=6000$, verify that $U_{1}=5920$.
2) Show that $U_{n+1}=1.02 U_{n}-200$.
3) Consider the sequence $\left(V_{n}\right)$ that is defined by $V_{n}=U_{n}-10000 ; \quad(n \geq 0)$. a- Prove that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence of common ratio 1.02.
b- Calculate V_{n} in terms of n and deduce U_{n} in terms of n.
c- During which year would the number of inhabitants in this village become less than 3000 for the first time?

IV- (8 points)

A - Let f be the function that is defined, on [0; + $\boldsymbol{\sim}$ [, by $f(x)=3(x+1) e^{-x}$ and let (C) be its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$.

1) Calculate $\lim _{x \rightarrow+\infty} f(x)$ and determine an asymptote of (C).
2) Show that $f^{\prime}(x)=-3 x e^{-x}$ and set up the table of variations of f.
3) Draw the curve (C).
4) Let F be the function that is defined on $\left[0 ;+\infty\left[\right.\right.$ by $\mathrm{F}(x)=3(-x-2) e^{-x}$. a- Show that F is an antiderivative (a primitive) of f.
b- Calculate the area of the region bounded by the curve (C) , the axis of abscissas and the lines of equations $x=0$ and $x=1$.

B - A factory produces a certain chemical liquid. The demand is modeled by : $f(p)=3(p+1) e^{-p}$; where p is the unit price expressed in thousands LL and $f(p)$ is expressed in thousands of liters, for $0.5 \leq p \leq 4$.

1) Calculate the demand corresponding to a unit price of 1000 LL .
2) The supply is modeled by $g(p)=\frac{e^{p}}{3}$.

The adjacing curve (T) is the representative curve of the function h defined by $h(p)=f(p)-g(p)$, on $[0.5 ; 4]$. a- Verify that the equation $h(p)=0$ has a unique root α and prove that $1.57<\alpha<1.58$.
b-Suppose that $\alpha=1.575$. Give an economical interpretation of this value of α.
3) a-Calculate $\mathrm{E}(p)$, the elasticity of the demand with respect to the price p.
b- Determine the set of values of p for which the demand is elastic, and find the corresponding prices.

IV	A1	$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{3(x+1)}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{3}{e^{x}}=0$; the axis of abscissas is an asymptote of (C).	1
	A2		2
	A3		2
	A4 a	$F^{\prime}(x)=3\left[e^{-x}-(-x-2) e^{-x}\right]=3 e^{-x}(-1+x+2)=3(x+1) e^{-x}=f(x)$	1
	A4	$\mathrm{A}=\int_{0}^{1} f(x) d x=[F(x)]_{0}^{1}=\mathrm{F}(1)-\mathrm{F}(0)=3\left(2-\frac{3}{e}\right) \mathrm{u}^{2}$.	$11 / 2$
	B1	For a price of $1000 \mathrm{LL} ; \mathrm{p}=1 ; \mathrm{f}(1)=\frac{6}{e}=2.207$ thus: 2207 liters.	1
	$\begin{gathered} \text { B2 } \\ \text { a } \end{gathered}$	The curve of the function h cuts the axis of abscissas at a unique point of abscissa α. The equation $h(p)=0$ has a unique solution $p=\alpha$, $\mathrm{h}(1.57)=0.0018>0$ and $\mathrm{h}(1.58)=-0.024<0$ Hence 1. $52<\alpha<1.58$.	$11 / 2$
	B2 b	For a unit price that is equal to 1575 LL , the market is in equilibrium.	1
	$\begin{gathered} \text { B3 } \\ \text { a } \end{gathered}$	$\mathrm{E}(\mathrm{p})=\frac{-p f^{\prime}(p)}{f(p)}=\frac{p^{2}}{p+1}$	$11 / 2$
	$\begin{aligned} & \text { B3 } \\ & \text { b } \end{aligned}$	$\begin{aligned} & \text { The demand is elastic iff } \mathrm{E}(\mathrm{p})>1 ; \frac{p^{2}}{p+1}>1 ; \mathrm{p}^{2}-\mathrm{p}-1>0 \\ & \mathrm{p}<\frac{1-\sqrt{5}}{2} \text { or } \mathrm{p}>\frac{1+\sqrt{5}}{2}(\text { with } 0.5 \leq p \leq 4) \\ & \frac{1+\sqrt{5}}{2}<\mathrm{p} \leq 4 \text { or } 1.618<\mathrm{p} \leq 4 \end{aligned}$ The unit price belongs to the interval] 1618 ; 4000].	$11 / 2$

