امتحانات شهادة الثانوية العامة فرع الاجتماع والاقتصاد

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

الاسم:	مسابقة في : الرياضيات	عددالمسائل: اربع
، المنظم . الرقم :	المدة: ساعتان	

ملاحظة : يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I-(4 points)

Le tableau suivant donne le montant des frais de publicité x, en millions LL, d'une usine de voitures et le nombre y, en dizaines de voitures vendues.

\mathcal{X}_{i}	10	12	14	14,5	15
\mathcal{Y}_i	20	25	30	35	40

- 1) Calculer les moyennes \overline{X} et \overline{Y} des variables x et y.
- 2) Représenter graphiquement le nuage des points $(x_i; y_i)$ ainsi que le point moyen $G(\overline{X}; \overline{Y})$ dans un repère orthogonal.
- 3) Calculer le coefficient de corrélation r et donner une interprétation à la valeur ainsi trouvée.
- 4) Déterminer une équation de la droite de régression $D_{y/x}$ de y en x et tracer cette droite dans le repère précédent.
- 5) On suppose que le modèle précédent reste valable lorsque cette usine dépense 18 000 000 LL en frais de publicité.
 - a- Estimer dans ce cas le nombre p de voitures vendues (la réponse sera donnée à l'unité près).
 - b- Le coût moyen de fabrication d'une voiture est de 15 000 000 LL. Chaque voiture est vendue à 20 000 000 LL.

Estimer le bénéfice de l'usine lorsqu'elle vend les p voitures.

II - (4 points)

Une urne contient 9 boules : 3 blanches, 4 rouges et 2 noires.

- A- On tire successivement, au hasard et sans remise, trois boules de l'urne.
- 1) Quelle est la probabilité que les trois boules tirées soient blanches ?
- 2) Quelle est la probabilité que la troisième boule tirée soit la seule blanche parmi les trois boules tirées ?
- **B-** Dans cette partie on tire **simultanément** au hasard trois boules de l'urne.
- 1) Soit C l'événement : « les trois boules tirées sont toutes de la même couleur ». Montrer que la probabilité de C est égale à $\frac{5}{84}$.
- 2) On désigne par X la variable aléatoire égale au nombre de boules noires tirées.
 - a- Déterminer la loi de probabilité de X.
 - b- Calculer l'espérance mathématique E(X).

III -(4 points)

Une étude statistique concernant le nombre des habitants d'un village montre que :

- Le nombre d'habitants était 6 000 au début de l'an 2 000.
- La croissance annuelle du nombre d'habitants est de 2 %.
- La diminution annuelle du nombre d'habitants est de 200 (installation dans les villes, émigration, ...).

On désigne par U_n le nombre des habitants de ce village en l'an (2000 + n).

- 1) On prend $U_0 = 6\,000$. Vérifier que $U_1 = 5920$.
- 2) Démontrer que $U_{n+1} = 1,02U_n 200$.
- 3) Soit la suite (V_n) définie par $V_n = U_n 10\,000$; $(n \ge 0)$.
 - a- Démontrer que (V_n) est une suite géométrique de raison 1,02.
 - b- Calculer V_n en fonction de n et en déduire U_n en fonction de n.
 - c- En quelle année le nombre des habitants de ce village devient-il pour la première fois inférieur à 3 000 ?

IV-(8 points)

A– Soit f la fonction définie, sur $[0; +\infty[$, par $f(x) = 3(x+1)e^{-x}$ et (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1) Calculer $\lim_{x \to +\infty} f(x)$ et déterminer une asymptote à (C).
- 2) Montrer que $f'(x) = -3xe^{-x}$ et dresser le tableau de variations de f.
- 3) Tracer la courbe (C).
- 4) Soit F la fonction définie, sur $[0; +\infty[$, par $F(x) = 3(-x-2)e^{-x}$.
 - a- Montrer que F est une primitive de f.
 - b- Calculer l'aire du domaine limité par la courbe (C), l'axe des abscisses et les droites d'équations x=0 et x=1.

B– Une usine fabrique un produit chimique liquide. La demande est modélisée par :

 $f(p) = 3(p+1)e^{-p}$; p est le prix unitaire exprimé en milliers LL et f(p) est exprimée en milliers de litres pour $0.5 \le p \le 4$.

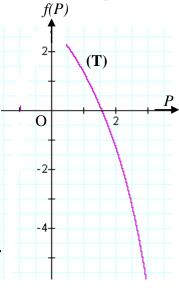
- 1) Calculer la demande pour un prix unitaire de 1 000 LL.
- 2) L'offre est modélisée par $g(p) = \frac{e^p}{3}$.

La courbe (T) ci-contre est la courbe représentative de la fonction h définie par h(p) = f(p) - g(p) sur [0,5; 4].

- a- Vérifier que l'équation h(p) = 0 admet une racine unique α et prouver que $1,57 < \alpha < 1,58$.
- b-On suppose que $\alpha = 1,575$.

Donner une interprétation économique de cette valeur de α .

- 3)a- Calculer l'élasticité e(p) de la demande par rapport au prix p.
 - b- Déterminer l'ensemble des valeurs de *p* pour lesquelles la demande est élastique et trouver les prix correspondants.



ES		MATH 1ère session		
2005 Q	,	Eléments de réponses	N	
	1		1	
	_	X = 13,1; $Y = 30$	1	
I	2		1	
	3	r = 0,953 Il y a une forte corrélation positive.	1	
	4	$D_{Y/X}: y = 3,633x - 17,60$	1 1/2	
	5a	$x = 18$; $y = 3,633 \times 18 - 17,60 = 47,794$, soit 478 voitures.	1	
	5b	Bénéfice : $(20\ 000\ 000\ -15\ 000\ 0000) \times 478 - 18\ 000\ 000 = 2\ 372\ 000\ 000\ LL$.	1 1/2	
	A1	$\mathbf{P(BBB)} = \frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} = \frac{1}{84}.$	1	
	A2	La 1 ^{ère} boule tirée n'est pas blanche ainsi que la 2 ^{ème} ; $p(\overline{B}; \overline{B}; B) = \frac{6}{9} \times \frac{5}{8} \times \frac{3}{7} = \frac{5}{28}$.	1 1/2	
-	B1	On peut tirer 3 boules blanches ou 3 boules noires; $P(C) = \frac{C_3^3 + C_4^3}{C_9^3} = \frac{5}{84}$		
II	B2 a	$\mathbf{X}(\Omega) = \{0, 1, 2\}$ $\mathbf{x_i} \qquad 0 \qquad 1 \qquad 2$ $\mathbf{P_i} \qquad \frac{C_7^3}{C_9^3} = \frac{5}{12} \qquad \frac{C_2^1 \times C_7^3}{C_9^3} = \frac{1}{2} \qquad \frac{C_2^2 \times C_7^1}{C_9^3} = \frac{1}{12}$	2 ½	
	B2 b	$\mathbf{E}(\mathbf{X}) = 0 + \frac{1}{2} + \frac{2}{12} = \frac{4}{6} = \frac{2}{3} = 0.666$.	1/2	
	1	$U_1 = 6\ 000 + 6000 \times 0,02 - 200 = 5920$	1	
	2	$U_{n+1} = U_n + 0.02 \times U_n - 200 = 1.02 \times U_n - 200$		
ш	3a	$\frac{V_{n+1}}{V_n} = \frac{U_{n+1} - 10000}{U_n - 10000} = \frac{1,02U_n - 200 - 10000}{U_n - 10000} = \frac{1,02U_n - 10200}{U_n - 10000} = \frac{1,02(U_n - 10000)}{U_n - 10000} = 1,02$		
	3b	$\begin{split} V_n &= V_o (1{,}02)^n \; ; \; V_o = U_o - 10\; 000 = -\; 4\; 000 \; ; \; V_n \; = -\; 4000 (1{,}02)^n \\ U_n &= V_n + 10\; 000 = -\; 4000 (1{,}02)^n + 10\; 000 \end{split}$		
	3c	$-4000(1,02)^{n} + 10\ 000 < 3000\ ;\ (1,02)^{n} > \frac{7}{4}\ ;\ n\ ln(1,02) > ln\frac{7}{4}\ ;\ n > 28,25\ ;\ n \ge 29$		
		En 2029 le nombre des habitants devient pour la première fois inférieur à 3 000.		
		21 2027 to momente des individues devient pour la première lois intérieur à 5 000.		

	A1	$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{3(x+1)}{e^x} = \lim_{x\to +\infty} \frac{3}{e^x} = 0$; l'axe des abscisses est une asymptote à (C).	1
	A2	f'(x) = 3[e ^{-x} -(x + 1)e ^{-x}] = 3 e ^{-x} (1-x-1) = -3x e ^{-x} . $ \frac{x \mid 0 + \infty}{f'(x) \mid 0} $ $ \frac{f'(x) \mid 3}{f(x) \mid 3} $	2
IV	A3	y O → x	2
	A4 a	$F'(x) = 3[e^{-x} - (-x - 2) e^{-x}] = 3 e^{-x} (-1 + x + 2) = 3(x + 1) e^{-x} = f(x)$	1
	A4 b	$\mathbf{A} = \int_{0}^{1} f(x)dx = [F(x)]_{0}^{1} = \mathbf{F}(1) - \mathbf{F}(0) = 3(2 - \frac{3}{e}) \mathbf{u}^{2}.$	1 1/2
	B1	Pour un prix de 1000LL; p = 1; f(1) = $\frac{6}{e}$ = 2,207 soit 2207 litres.	1
	B2 a	La courbe de la fonction h coupe l'axe des abscisses en un point unique d'abscisse α . L'équation $h(p)=0$ admet une solution unique $p=\alpha$, $h(1,57)=0,0018>0$ et $h(1,58)=-0,024<0$ Donc $1,52<\alpha<1,58$.	1 1/2
	B2 Pour un prix unitaire égal à 1575 LL le marché est en équilibre. b		1
	B3 a	$\mathbf{e}(\mathbf{p}) = \frac{pf'(p)}{f(p)} = \frac{-p^2}{p+1}$	1 1/2
	B3 b	La demande est élastique ssi e(p) < -1 ; $\frac{-p^2}{p+1}$ < -1 ; $p^2 - p - 1 > 0$ $p < \frac{1-\sqrt{5}}{2} \text{ ou } p > \frac{1+\sqrt{5}}{2} \text{ (avec 0,5} \le p \le 4)$ $\frac{1+\sqrt{5}}{2} Le prix unitaire appartient à l'intervalle] 1618; 4000].$	1 1/2