$$
\begin{aligned}
& \text { الاسم: } \\
& \text { مسـابقة في مادة الرياضيات } \\
& \text { عدد المسائل: اربع } \\
& \text { الرقم: } \\
& \text { المدة: ساعتان } \\
& \text { ملاحظة: :يسمح باستعمال آلة حاسبة غبر قابلة للبرمجة او اختزان المعلومات او رسم الييانات. } \\
& \text { يستطيع المرشح الإجابة بالترنيب الذي يناسبه (دون الالتزام بترتبب المسائل الوارد في المسابقة) }
\end{aligned}
$$

I-(4 points)

The annual profit (in millions LL) of a service agency, starting from the year 2001, is as shown in the following table:

| Year | 2001 | 2002 | 2003 | 2004 | 2005 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rank of the year: $\quad \mathrm{x}_{\mathrm{i}}$ | 1 | 2 | 3 | 4 | 5 |
| Profit in millions LL : y_{i} | 200 | 220 | 250 | 270 | 280 |

1) a- Determine the coordinates of the center of gravity G.
b- Construct the scatter plot of the points associated to the distribution ($\mathrm{X}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{i}}$) and plot the point G , in a rectangular system.
2) Write an equation of $D_{y / x}$, the line of regression of y in terms of x, and draw this line in the preceding system.
3) Suppose that the above pattern remains valid till the year 2015.
a- How much is the profit that this agency is expected to achieve in the year 2008 ?
b- After which year would the profit of this agency exceed 400 millions LL for the first time ?

II- (4 points)

In a shop there are 1000 leather wallets, of which some are defective.
These wallets were manufactured by three factories $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ according to the following table :

	Factory $\boldsymbol{\alpha}$	Factory $\boldsymbol{\beta}$	Factory $\boldsymbol{\gamma}$
Number of wallets	200	350	450
Percentage of defective wallets	5%	4%	2%

A wallet is chosen at random from these 1000 wallets, and consider the following events :
A : «The chosen wallet was produced by the factory α ».
B : «The chosen wallet was produced by the factory $\boldsymbol{\beta}$ ».
C : «The chosen wallet was produced by the factory γ ».
D : « The chosen wallet is defective».

1) a- Prove that the probability $\mathrm{P}(\mathrm{D} \cap \mathrm{A})$ is equal to $\frac{1}{100}$.
b- Calculate the following probabilities: $\mathrm{P}(\mathrm{D} \cap \mathrm{B}), \mathrm{P}(\mathrm{D} \cap \mathrm{C})$ and $\mathrm{P}(\mathrm{D})$.
2) Knowing that the chosen wallet is not defective, what is the probability that it was manufactured by the factory $\boldsymbol{\alpha}$?
3) A wallet is sold for 50000 LL if manufactured by the factory $\boldsymbol{\alpha}$, for 60000 LL if manufactured by the factory $\boldsymbol{\beta}$ and for 80000 LL if manufactured by the factory $\boldsymbol{\gamma}$.
The price of any defective wallet is reduced by 30%.
Designate by X the random variable that is equal to the final price of the wallet that was randomly chosen.
Find the six values of X and determine the probability distribution of X .

III- (4 points)

Fadi deposits a capital of 100 million LL in a bank, at 10% annual interest rate, compounded yearly. At the end of every year, Fadi withdraws 5 million LL from his account.
Let $\mathrm{U}_{0}=100$ and designate by U_{n} the amount, in millions LL, that is in Fadi's account at the end of the nth year after withdrawing the 5 million LL.

1) a- Verify that $U_{1}=105$ and calculate U_{2}.
b- Show that the sequence $\left(U_{n}\right)$ is not geometric.
c- Justify the relation $\mathrm{U}_{\mathrm{n}+1}=1.1 \mathrm{U}_{\mathrm{n}}-5$.
2) Let $V_{n}=U_{n}-50$, for every natural integer n.
a- Show that the sequence $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence of common ratio 1.1.
b- Calculate V_{n} in terms of n, and find the value of U_{8}.

IV-(8 points)

A- Let f be the function that is defined on $\left[0 ;+\infty\left[\right.\right.$ by $f(x)=\left(x^{2}+2 x\right) e^{-x}$, and let (C) be its $\rightarrow \rightarrow$
representative curve in an orthonormal system ($\mathrm{O} ; \mathrm{i}, \mathrm{j}$) .

1) a- Verify that the axis of abscissas is an asymptote of (C).
b- Calculate $\mathrm{f}(\sqrt{2})$ and give your answer to the nearest 10^{-3}.
2) a- Show that $f^{\prime}(x)=\left(2-x^{2}\right) e^{-x}$ and set up the table of variations of f.
b- Write an equation of the line (d) that is tangent to (C) at O.
3) Draw the line (d) and the curve (C).
4) Let F be the function that is defined on $\left[0 ;+\infty\left[\right.\right.$ by $F(x)=\left(-x^{2}-4 x-4\right) e^{-x}$.
a- Show that F is an antiderivative (primitive) of f .
b- Calculate the area of the region bounded by the curve (C) , the axis of abscissas and the lines of equations $\mathrm{x}=0$ and $\mathrm{x}=1$.

B- A factory produces a certain liquid detergent. The demand, in thousands of liters, is modeled by : $d(p)=(p+2) e^{-p}$, where p is the unit price (price of one liter) in thousands LL. $\quad(1 \leq p \leq 4)$.

1) Calculate the demand corresponding to a unit price of 2000 LL .
2) Prove that the revenue function is expressed by $f(p)=\left(p^{2}+2 p\right) e^{-p}$.
3) Calculate the unit price for which the revenue would be maximum. Determine this maximum.
4) a- Determine $E(p)$, the elasticity of the demand with respect to the price.
b- Calculate $\mathrm{E}(\sqrt{2})$, and give an economical interpretation of the value thus obtained.

QII	SHORT ANSWERS								M
			Factory α		Factory β		Factory γ	Total	
Number of defective wallets			10		14		9	33	
Number of non-defective wallets				190	336		441	967	
Total				00	350		450	1000	
1.a	$P(D \cap A)=\frac{10}{1000}=\frac{1}{100}$								1
1.b	$\begin{aligned} & \mathrm{P}(\mathrm{D} \cap \mathrm{~B})=\frac{14}{1000}=\frac{7}{500} ; \quad \mathrm{P}(\mathrm{D} \cap \mathrm{C})=\frac{9}{1000} \\ & \mathrm{P}(\mathrm{D})=\mathrm{P}(\mathrm{D} \cap \mathrm{~A})+\mathrm{P}(\mathrm{D} \cap \mathrm{~B})+\mathrm{P}(\mathrm{D} \cap \mathrm{C})=\frac{10+14+9}{1000}=\frac{33}{1000} \\ & \mathrm{OR}: \mathrm{P}(\mathrm{D})=\frac{33}{1000} \text { by reading the table. } \end{aligned}$								2
2	$\mathrm{P}(\mathrm{~A} / \overline{\mathrm{D}})=\frac{190}{967}$								1
3	The values of X are : $35000 ; 42000 ; 50000 ; 56000 ; 60000$ and 800000								3
	X_{i}	35000	42000	50000	56000	60000	0 - 80000	Total	
	p_{i}	0.01	0.014	0.19	0.009	0.336	- 0.441	1	

