دورة سنة ٢٠٠٦ الأستثنائية

امتحانات شهادة الثانوية العامة فرع الأجتماع والأقتصاد

الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: اربع
	المدة: ساعتان	
الرقم:		

ملاحظة: :يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I-(4 points)

The annual profit (in millions LL) of a service agency, starting from the year 2001, is as shown in the following table:

Year	2001	2002	2003	2004	2005
Rank of the year: x _i	1	2	3	4	5
Profit in millions LL : y _i	200	220	250	270	280

1) a- Determine the coordinates of the center of gravity G.

b- Construct the scatter plot of the points associated to the distribution $(x_i; y_i)$ and plot the point G, in a rectangular system.

2) Write an equation of $D_{V/X}$, the line of regression of y in terms of x, and draw this line in the preceding

system.

3) Suppose that the above pattern remains valid till the year 2015.

a- How much is the profit that this agency is expected to achieve in the year 2008 ?

b- After which year would the profit of this agency exceed 400 millions LL for the first time ?

II- (4 points)

In a shop there are 1000 leather wallets, of which some are defective.

These wallets were manufactured by three factories α , β and γ according to the following table :

	Factory α	Factory β	Factory γ
Number of wallets	200	350	450
Percentage of defective wallets	5%	4%	2%

A wallet is chosen at random from these 1000 wallets, and consider the following events :

- A: « The chosen wallet was produced by the factory α ».
- B: « The chosen wallet was produced by the factory β ».
- C: « The chosen wallet was produced by the factory γ ».
- D: « The chosen wallet is defective ».
- 1) a- Prove that the probability $P(D \cap A)$ is equal to $\frac{1}{100}$.
 - b- Calculate the following probabilities: $P(D \cap B)$, $P(D \cap C)$ and P(D).
- 2) Knowing that the chosen wallet is not defective, what is the probability that it was manufactured by the factory α ?
- 3) A wallet is sold for 50 000LL if manufactured by the factory α , for 60 000LL if manufactured by the factory β and for 80 000LL if manufactured by the factory γ .

The price of any defective wallet is reduced by 30 %.

Designate by X the random variable that is equal to the final price of the wallet that was randomly chosen. Find the six values of X and determine the probability distribution of X.

III- (4 points)

Fadi deposits a capital of 100 million LL in a bank, at 10 % annual interest rate, compounded yearly. At the end of every year, Fadi withdraws 5 million LL from his account.

Let $U_0 = 100$ and designate by U_n the amount, in millions LL, that is in Fadi's account at the end of the nth year after withdrawing the 5 million LL.

1) a- Verify that $U_1 = 105$ and calculate U_2 .

b- Show that the sequence (U_n) is not geometric.

c-Justify the relation $U_{n+1} = 1.1U_n - 5$.

2) Let $V_n = U_n - 50$, for every natural integer n.

a- Show that the sequence (V_n) is a geometric sequence of common ratio 1.1 .

b- Calculate V_n in terms of n, and find the value of U_8 .

IV-(8 points)

A-Let f be the function that is defined on $[0; +\infty[$ by $f(x)=(x^2+2x)e^{-x}$, and let (C) be its $\rightarrow \rightarrow$

representative curve in an orthonormal system (O; \vec{i}, \vec{j}) .

- 1) a- Verify that the axis of abscissas is an asymptote of (C). b- Calculate $f(\sqrt{2})$ and give your answer to the nearest 10^{-3} .
- 2) a- Show that $f'(x) = (2-x^2)e^{-x}$ and set up the table of variations of f. b- Write an equation of the line (d) that is tangent to (C) at O.
- 3) Draw the line (d) and the curve (C).
- 4) Let F be the function that is defined on $[0; +\infty[$ by $F(x) = (-x^2 4x 4)e^{-x}$. a- Show that F is an antiderivative (primitive) of f.
 - b- Calculate the area of the region bounded by the curve (C), the axis of abscissas and the lines of equations x = 0 and x = 1.

B- A factory produces a certain liquid detergent. The demand, in thousands of liters, is modeled by :

- $d(p) = (p+2)e^{-p}$, where p is the unit price (price of one liter) in thousands LL. $(1 \le p \le 4)$.
- 1) Calculate the demand corresponding to a unit price of 2 000 LL.
- 2) Prove that the revenue function is expressed by $f(p)=(p^2+2p)e^{-p}$.
- 3) Calculate the unit price for which the revenue would be maximum. Determine this maximum.
- 4) a- Determine E(p), the elasticity of the demand with respect to the price.
 - b- Calculate $E(\sqrt{2})$, and give an economical interpretation of the value thus obtained.

	2 nd SESSION - 2006	
QI	SHORT ANSWERS	Μ
1.a	$\overline{\mathbf{X}} = 3$; $\overline{\mathbf{Y}} = 244$	1
1.b		1 1⁄2
2	Using a calculator: $y = 21x + 181$	1 1/2
3.a	In 2008 : $x = 8$, $y = 21 \times 8 + 181 = 349$ The profit achieved in 2008 is estimated by 349 000 000 LL	1 1⁄2
3.b	y > 400; $21x + 181 > 400$; $21x > 219$; $x > 10.42$. In 2011 the profit exceeds 400 million LL for the first time.	1 1⁄2

QII	SHORT ANSWERS				M	
		Factory α	Factory β	Factory y	Total	
	Number of defective wallets	10	14	9	33	
N	Number of non-defective wallets	190	336	441	967	
	Total	200	350	450	1 000	
1.a	$P(D \cap A) = \frac{10}{1000} = \frac{1}{100}$					1
	$P(D \cap B) = \frac{14}{1000} = \frac{7}{500}$; $P(D \cap C) = \frac{9}{1000}$					
1.b	1.b $P(D) = P(D \cap A) + P(D \cap B) + P(D \cap C) = \frac{10 + 14 + 9}{1000} = \frac{33}{1000}$				2	
	• OR : P(D) = $\frac{33}{1000}$ by	reading the table.				
2	$P(A/\overline{D}) = \frac{190}{967}$				1	
	The values of X are : 35 000 ; 42 000 ; 50 000 ; 56 000 ; 60 000 and 80 0000					
3	x _i 35 000 4	2 000 50 000	56 000	50 000 80 000	Total	3
	p _i 0.01	0.014 0.19	0.009	0.336 0.441	1	

QIII	SHORT ANSWERS	М
1.a	$\begin{array}{l} U_1 = U_0 \ (1+0.1) - 5 = 100 \times 1.1 \ - 5 = 105. \\ U_2 = U_1 \times 1.1 - 5 = 105 \times 1.1 - 5 = 110.5. \end{array}$	1
1.b	$\frac{U_1}{U_0} = \frac{105}{100} = 1.05 \text{ and } \frac{U_2}{U_1} = \frac{110.5}{105} = 1.052 \text{, thus } \frac{U_1}{U_0} \neq \frac{U_2}{U_1} \text{, and } (U_n) \text{ is not geometric}$	1 1⁄2
1.c	$U_{n+1} = U_n + 0.1U_n - 5 = 1.1U_n - 5.$	1
	$\frac{V_{n+1}}{V_n} = \frac{U_{n+1} - 50}{U_n - 50} = \frac{1.1U_n - 55}{U_n - 50} = \frac{1.1(U_n - 50)}{U_n - 50} = 1.1$ (V _n) is a geometric sequence of common ratio q = 1.1.	1 1⁄2
2.b	$V_o = U_o - 50 = 50$; $V_n = V_o \times q^n = 50(1.1)^n$; $U_8 = V_8 + 50 = 50(1.1)^8 + 50 = 157.179.$	2

