مسابقة في مادةّتايضايرل| الاسم:

I-(3.5 points)

In the complex plane, referred to a direct orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$), consider the points A, B and M of respective affixes 2,4 and z (where $\mathrm{z} \neq 2$).
Let M^{\prime} be the point of affix z^{\prime} such that $z^{\prime}=\frac{z-4}{z-2}$.

1) a- Give a geometric interpretation of $\left|z^{\prime}\right|,|z-4|$ and $|z-2|$.
b- Determine the set of points M when M^{\prime} moves on the circle with center O and radius 1 .
2) Let $z=x+i y$ and $z^{\prime}=x^{\prime}+i y$ '.
a- Express x^{\prime} and y^{\prime} in terms of x and y.
b- When z ' is real, find the line on which the point M moves.

II-(4 points)

An urn U contains four balls numbered $\mathbf{1}$, three balls numbered $\mathbf{2}$ and one ball numbered 5 .
Another urn V contains three balls numbered $\mathbf{1}$ and five balls numbered 2.
A- Two balls are drawn, simultaneously and randomly, from the urn U.
Calculate the probability of each of the following events:
E: « the two drawn balls carry the same number»
$\mathrm{F}:$ « the product of the two numbers, that are marked on the two drawn balls, is $10 »$.
B- We draw randomly one ball from the urn U and one ball from the urn V .
Let X be the random variable that is equal to the sum of the two numbers that are marked on the two drawn balls.
1- Give the five possible values of X .
2- Verify that the probability of having $X=3$ is equal to $\frac{29}{64}$.
3- Determine the probability distribution of X .

III-(4 points)

In the space referred to a direct orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \vec{j}, \vec{k})$, consider:
the plane (P) of equation $\mathrm{x}+\mathrm{y}+\mathrm{z}-4=0$, the points $\mathrm{A}(3 ; 1 ; 0), \mathrm{B}(1 ; 2 ; 1), \mathrm{C}(1 ; 1 ; 2)$ and $\mathrm{E}(2 ; 0 ;-1)$.

1) Prove that the triangle $A B C$ is right angled at B.
2) a- Verify that (P) is the plane that is determined by A, B and C. b- Show that the line (AE) is perpendicular to plane (P).
3) Designate by (Q) the plane passing through A and perpendicular to (BE). Write an equation of (Q).
4) The planes (P) and (Q) intersect along a line (D).
a- Prove that the lines (D) and (BC) are parallel.
b- Let L be any point on (BC) and H be its orthogonal projection on (Q). Show that LH remains constant as L moves on the line (BC).

IV-(8.5 points)

A- Given the differential equation (E) : $y^{\prime}-y-e^{x}+1=0$.
Let $\mathrm{z}=\mathrm{y}-\mathrm{xe}^{\mathrm{x}}-1$.

1) Find a differential equation (E^{\prime}) that is satisfied by z, and determine its general solution.
2) Deduce the general solution of (E), and find a particular solution y of (E) that verifies $y(0)=0$.

B- Let f be the function that is defined on IR by $\mathrm{f}(\mathrm{x})=(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+1$, and designate by (C) its representative curve in an orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.

1) a- Calculate $\lim _{x \rightarrow+\infty} f(x)$. Give $f(2)$ in the decimal form.
b- Calculate $\lim _{x \rightarrow-\infty} f(x)$ and deduce an asymptote (d) to (C).
c- Verify that the curve (C) cuts its asymptote (d) at the point $\mathrm{E}(1 ; 1)$.
2) a- Calculate $f^{\prime}(x)$ and set up the table of variations of f.
b- Prove that the curve (C) has a point of inflection.
3) Draw the line (d) and the curve (C).
4) a- Prove that the function f has, on [$0 ;+\infty$ [, an inverse function g.
b- Draw the curve (G) that represents g, in the system $(O ; \vec{i}, \vec{j})$.
c- Calculate the area of the region bounded by the two curves (C) and (G).

SCHEME OF CORRECTION		$2^{\text {nd }}$ SESSION 2006
Q1		M
1.a	$\left\|z^{\prime}\right\|=O M^{\prime} ;\|z-4\|=B M$ and $\|z-2\|=A M$	1
1.b	$\left\|z^{\prime}\right\|=\frac{\|z-4\|}{\|z-2\|}$ gives $\mathrm{OM}^{\prime}=\frac{\mathrm{BM}}{\mathrm{AM}} . \mathrm{OM}^{\prime}=1$ is equivalent to $\mathrm{BM}=\mathrm{AM}$ and thus the set of points M is the perpendicular bisector of $[A B]$,	1
2.a	$x^{\prime}+i y^{\prime}=\frac{x+i y-4}{x+i y-2}=\frac{(x-4+i y)(x-2-i y)}{(x-2)^{2}+y^{2}} ; x^{\prime}=\frac{x^{2}+y^{2}-6 x+8}{(x-2)^{2}+y^{2}}, y^{\prime}=\frac{2 y}{(x-2)^{2}+y^{2}}$	1
2.b	z^{\prime} is real iff $\mathrm{y}^{\prime}=0$, to get $\mathrm{y}=0$, so M moves on the axis of abscissas.	1/2

Q2							M
A	$\mathrm{P}(\mathrm{E})=\mathrm{P}(1 ; 1)+\mathrm{P}(2 ; 2)=\frac{\mathrm{C}_{4}^{2}}{\mathrm{C}_{8}^{2}}+\frac{\mathrm{C}_{3}^{2}}{\mathrm{C}_{8}^{2}}=\frac{9}{28} . \quad \mathrm{P}(\mathrm{~F})=\mathrm{P}(2 ; 5)=\frac{\mathrm{C}_{3}^{1} \times \mathrm{C}_{1}^{1}}{\mathrm{C}_{8}^{2}}=\frac{3}{28}$						$11 / 2$
B-1	The five values of X are: $2 ; 3 ; 4 ; 6 ; 7$ $\mathrm{P}(\mathrm{X}=3)=\mathrm{P}(1 ; 2)+\mathrm{P}(2 ; 1)=\frac{4}{8} \times \frac{5}{8}+\frac{3}{8} \times \frac{3}{8}=\frac{29}{64}$						$1 / 2$
B-2							1/2
B-3	X_{i}	2	3	4	6	7	$11 / 2$
	P_{i}	$\frac{4}{8} \times \frac{3}{8}=\frac{12}{64}$	$\frac{29}{64}$	$\frac{3}{8} \times \frac{5}{8}=\frac{15}{64}$	$\frac{1}{8} \times \frac{3}{8}=\frac{3}{64}$	$\frac{1}{8} \times \frac{5}{8}=\frac{5}{64}$	

Q3		M
1	$\overrightarrow{\mathrm{AB}}(-2,1,1), \overrightarrow{\mathrm{BC}}(0,-1,1) ; \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=0$, thus ABC is right angled at B .	1/2
2.a	The coordinates of A, B and C verify the equation of (P). $\Rightarrow \mathrm{OR}: \overrightarrow{\mathrm{AM}} \cdot(\overrightarrow{\mathrm{AB}} \wedge \overrightarrow{\mathrm{AC}})=0$	1/2
2.b	$\overrightarrow{\mathrm{AE}}(-1,-1,-1), \overrightarrow{\mathrm{N}}_{\mathrm{P}}(1,1,1)$ so $\overrightarrow{\mathrm{AE}}=-\overrightarrow{\mathrm{N}}_{\mathrm{P}}$ and (AE) is perpendicular to (P).	1/2
3	$\overrightarrow{\mathrm{BE}}(1,-2,-2)=\vec{N}_{\mathrm{Q}}$ thus (Q) : $\mathrm{x}-2 \mathrm{y}-2 \mathrm{z}+\mathrm{d}=0$, A belongs to (Q) gives $\mathrm{d}=-1$ (Q) : $\mathrm{x}-2 \mathrm{y}-2 \mathrm{z}-1=0$.	1/2
4.a	$\overrightarrow{\mathrm{BC}}(0,-1,1), \overrightarrow{\mathrm{V}}_{\mathrm{D}}=\overrightarrow{\mathrm{N}}_{\mathrm{P}} \wedge \overrightarrow{\mathrm{N}}_{\mathrm{Q}}=3 \overrightarrow{\mathrm{j}}-3 \overrightarrow{\mathrm{k}}$ then $\overrightarrow{\mathrm{V}}_{\mathrm{D}}=-3 \overrightarrow{\mathrm{BC}}$ and B does not belong to (Q) , hence (D) // (BC). $\Rightarrow O R:(B C)$ is perpendicular to plane (ABE) , then (BC) is perpendicular to (EB), and (EB) is perpendicular to (Q), hence $(\mathrm{BC}) / /(\mathrm{Q})$ [since $(\mathrm{BC}) \not \subset(\mathrm{Q})]$ (P) contains (BC) then (P) cuts (Q) along $(\mathrm{D}) / /(\mathrm{BC})$.	1
4.b	(D) $/ /(\mathrm{BC})$, then $(\mathrm{BC}) / /(\mathrm{Q})$. All the points on (BC) have the same distance from (Q); \Rightarrow OR : Equations of (BC) : $\mathrm{x}=1, \mathrm{y}=-\mathrm{m}+2, \mathrm{z}=\mathrm{m}+1$ $\mathrm{d}(\mathrm{M} \rightarrow(\mathrm{Q}))=\frac{\|1+2 \mathrm{~m}-4-2 \mathrm{~m}-2-1\|}{\sqrt{1+4+4}}=2=\text { constant }$	1

