مادة الكيمياء	مسابقة في
ساعتان	المدة

This Exam Includes **Three Exercises**. It Is Inscribed on Four Pages Numbered from **1** to **4**. The Use of A Non-programmable Calculator Is Allowed.

Answer the three following Exercises:

الإسم:

الرقم:

Exercise (7 points) Kinetic Study of the Reaction of Formic Acid with Bromine

Formic (methanoic) acid is a colorless corrosive liquid that is secreted by ants and other insects. It is commonly used in paper and textile industries and in the manufacture of insecticides

The aim of this exercise is to know some of the uses of formic acid in organic synthesis and to study the kinetic of its reaction with bromine liquid.

<u>Given</u>:

• Molar volume of gas: V_m = 24 L.mol⁻¹.

1- Formation of Methanoic Acid Derivative

Methanoic acid (HCOOH) reacts with phosphorus pentachloride (PCI₅) to give an acyl chloride (G).

- 1.1- Write the equation of this reaction.
- 1.2- Give the systematic name of compound (G).
- 1.3- Write the formula and give the name of the other reactant which gives with methanoic acid the same compound (G).

2- Preliminary Study

In aqueous solution, formic acid reacts slowly with molecular Bromine according to the following equation:

HCOOH (aq) + Br₂ (aq) $\longrightarrow 2Br^{-}_{(aq)} + 2H^{+}_{(aq)} + CO_{2(g)}$ Aqueous bromine solution has a red brown color, while hydrobromic acid (H⁺ + Br⁻) solution is colorless.

At t = 0, 50 mL of aqueous solution of bromine of molar concentration $C_1 = 0.024 \text{ mol}.L^{-1}$ are mixed with 50 mL of formic acid solution of molar concentration $C_2 = 0.030 \text{ mol}.L^{-1}$.

- 2.1- Determine the concentration of each reactant in the mixture at t = 0. Specify whether the reactants are in stoichiometric proportions.
- 2.2- Show the following relation:

 $[Br_2]_t = 0.012 - 4.16 \times 10^{-4} \text{ xV} (CO_2)_t$; where $[Br_2]_t$ is the molar concentration of Bromine remained at instant t and $V(CO_2)_t$ is the volume of CO_2 formed at the same instant t in mL.

3- Kinetic Study

The measured volumes of CO_2 gas released, at different instants, are given in the following table:

t (sec)	0	50	100	150	200	250	300	350	400
V(CO ₂) (mL)	0	4.56	8.50	11.76	14.50	16.80	18.72	20.40	21.70
[Br ₂] (10 ⁻³ mol×L ⁻¹)		10.1	8.46	7.11		5.01	4.21	3.51	

- 3.1- Copy, on the answer sheet, the above table and complete it using the preceding relation.
- 3.2- Plot, on a graph paper, the curve $[Br_2]_t = f(t)$. Take the following scale: abscissa: 1cm for 50 s and ordinate 1cm for 1.0×10^{-3} mol.L⁻¹
- 3.3- Determine the rate of disappearance of Br_2 at t =150 s. Deduce the rate of formation of Br^- at the same instant t.
- 3.4- Determine the half-life of the reaction.
- 3.5- At t =450 s, the volume of carbon dioxide released becomes 22.60 mL. Justify if the obtained solution is colorless or not.

Second Exercise (6 points) Analysis of an Organic Compound

The aim of this exercise is to identify an organic compound (A) and to recognize some of its properties.

<u>Given</u>: M (H) = 1 g.mol⁻¹; M(C) = 12 g.mol⁻¹; M(O) = 16 g.mol⁻¹

1- Molecular Formula and Isomerism of (A)

The complete combustion of 3.70 g of (A) gives 6.60 g of carbon dioxide and 2.70 g of water vapor. The vapor density of (A) relative to oxygen gas is equal to 2.31.

- 1.1- Show that the molecular formula of (A) is $C_3H_6O_2$.
- 1.2- Write the condensed structural formulas of the possible isomers of (A), knowing that these isomers have saturated open carbon chains.

2- Identification of (A)

The dissolution of a sample of (A) in water gives a solution of pH = 3.1.

- 2.1- Identify compound (A).
- 2.2- Indicate the conjugate acid /base pair to which compound (A) belongs.

3- Certain Reactions of (A)

The dehydration of 111 g of (A), in the presence of (P_2O_5) , gives according to a complete reaction an organic compound (B).

- 3.1- Write, using condensed structural formulas of the organic compounds, the equation of the above reaction. Give the systematic name of (B).
- 3.2- Show that the number of moles of (B) formed at the end of the reaction is 0.75 mol.
- 3.3- The amount of (B) obtained above is mixed with 2 mol of 2-methyl-1-propanol, in order to prepare an ester (E) which has fruits flavor. A mass of 90 g of ester (E) is obtained.
 - 3.3.1- Write the equation of this esterification reaction. Give the systematic name of ester (E).
 - 3.3.2- This reaction is carried out in dry containers. Explain why.
 - 3.3.3- Determine the yield of this reaction.

Third Exercise (7 points) Buffer solution

:

The aim of this exercise is to prepare a buffer solution.

Given:

- Available materials:
 - Flask containing pure crystals of ammonium chloride NH₄Cl;
 - Sensitive balance, watch glass, spatula, funnel, magnetic stirrer;
 - Beakers: 100, 200 and 500 mL;
 - Graduated cylinders: 100, 200 and 500 mL;
 - Volumetric flasks: 100, 200 and 500 mL;
 - Volumetric pipets: 10 and 20 mL.
- This study is performed at 25 °C.
- $pK_a(NH_4^+/NH_3) = 9.2$; $pK_a(H_3O^+/H_2O) = 0$; $pK_a(H_2O/HO^-) = 14$.
- $M(NH_4CI) = 53.5 \text{ g. mol}^{-1}$.

1- pH of an Ammonia Solution

Given an aqueous solution (A) of ammonia of concentration $C_1 = 0.10$ mol.L⁻¹.

- 1.1- Write the equation of the reaction of ammonia with water.
- 1.2- Determine the constant K_R of this reaction.
- 1.3- Determine the pH of the solution (A).

2- Preparation of an Ammonium Chloride Solution

A volume of 500 mL of a solution (B) of ammonium chloride (NH $_4^+$ +Cl⁻) of concentration C₂ = 0.1 mol.L⁻¹ is to be prepared.

- 2.1- Describe, briefly, the procedure for the preparation of solution (B) and specify, from the given list, the suitable materials needed.
- 2.2- Write the equation of the reaction of the ammonium ion (NH_4^+) with water. Show whether this reaction is complete or not.

3- Preparation of a Buffer Solution

60 mL of solution (A) and 40 mL of solution (B) are mixed to give a solution noted as (C).

- 3.1- Place on a pK_a axis the conjugate acid/base pairs involved in this mixture. Underline the major species introduced in this mixture
- 3.2- Write the equation of the predominant (most advanced) reaction.
- 3.3- Determine the pH of solution (C).
- 3.4- Add 1.0x10⁻³ mol of HCl to solution (C) without a noticeable change in volume.
 - 3.4.1- Write the equation of the reaction that takes place which is considered complete.
 - 3.4.2- Determine the new value of pH of the resulting solution. Conclude.
 - 3.4.3-Give two other characteristics of solution (C).

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

مادة الكيمياء

مشروع معيار التصحيح

		Fir	st Exer	cise (7	points)				
Part			Expec	ted Ans	wer				Mark
1	Organic synthesis								0.7
1.1	The equation of the								0.5
	H – COOH + PCI				+ HCI				
1.2	Compound (G) is r								0.25
1.3	The formula of this	reactant	is SOC	I_2 and it	s name	is thion	yl chlor	ide.	0.5
2 2.1	Preliminay Study		0	$\overline{024 \times 50}$					1
2.1	$C_0 = \frac{n_0}{V_{total}}$. So [Br	$[_2]_0 = \frac{0}{2}$	$\frac{024 \times 50}{100}$	= 0.012	2 mol.L	-1		1
	and [HCOOH] ₀ = $\frac{1}{2}$	0.03×50	= 0.015	5 mol.L ⁻¹					
		100							
	The stoichiométris					2			
	R _{HCOOH}	$=\frac{\Pi(HC)}{\Gamma(HC)}$	JOH) _{initi}	$\frac{al}{al} = \frac{0.0}{0.0}$	<u>3x50x10</u>	$\frac{1}{2}$ = 1.5	5×10^{-3}		
			1		1				
	$R_{Br_2} = \frac{n}{2}$	Br ₂)initia	$\frac{1}{-} = 12x^{1}$	10^{-3}					
	r_{Br_2} –	1	- 1,271	10					
	$R_{HCOOH} \succ F$	Br ₂							
	Thus the reactants	are not i	n a stoe	chiome	tric prop	ortion.			
	Br ₂ is the limiting r	eactant w	hile HC	OOH is	in exce	SS			
									1
2.2	At any instant t we			n/Br					1
	n(Br ₂) _{remained at time t} but by stoichiometi		ven at t =0	- II(DI ₂)	reacted at	time t			
		•		V(CO)	.).				
	n(Br ₂) _{reacted at time t} =	$n(CO_2)$	formed at t	$=\frac{V}{V}$					
	then n(Br ₂) _{remained at time t} =n(Br ₂) _{taken at t=0} - $\frac{V(CO_2)_t}{V_m}$								
	then n(Br ₂) _{rema}	ined at time t	$=n(Br_2)$	taken at t =	=0 - <u>(</u>	$\frac{UU_2}{V}$			
						m			
	Divide by V w	e get :	[Br ₂] ₁	= [B	r ₂] _{t=0}	$-\frac{V(CC)}{V}$	$\frac{V_2}{V}_t$		
						$V_m \times$	V		
	$[Br_2]_t = [Br_2]$	$t=0$ - $\frac{V}{2}$	$(CO_2)_{in \text{ml}}$	the	n				
	$[Br_2]_t = 0.012$								
	$[D_{2}]_{t} = 0.012$	- 4.10 ×	$10 \times V(0)$	(0,0).					
3	Kinetic Study								
3.1	The table :								0,5
	t (s) 0 50		150	200	250	300	350	400	
	$V(CO_2)$ 0 4.8	6 8.50	11.76	14.50	16.80	18.72	20.40	21.70	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c $.1 8.46	7.11	5.97	5.01	4.21	3.51	2.97	
	$ ^{3} \text{ mol.L}^{-1} $								
		•	•	-	•		•	·	

3.2	The graph	1
	$[\mathbf{Br}_2]$ mol/l	
	A(0:	
	10 No. 10	
	5	
	0 50 100 150 200 250 300 350 400 450	
	$\mathbf{k} \mathbf{t}_1 \mathbf{t}$ t (s)	
3.3	Instantaneous rate is the negative slope of the tangent drawn on the curve	1
	$[Br_2] = f(t)$ at the instant of abscissa t =150 sec	
	$r(Br_2) = -\frac{d[Br_2]}{dt} = -\frac{[Br_2]_B - [Br_2]_A}{t_B - t_A} = -\frac{0 - 10.8 \times 10^{-3}}{430 - 0} =$	
	$2.51 \times 10^{-5} \text{ mol} \times \text{L}^{-1} \times \text{sec}^{-1}$.	
	$r(Br^{-}) = 2 \times r(Br_2) = 2 \times 2.502 \times 10^{-5} = 5.02 \times 10^{-5} \text{ mol.L}^{-1}.\text{s}^{-1}.$	0.75
3.4	Half life of the reaction is the time required for the concentration of the	0.75
	limiting reactant to reach its half of the initial value. $\begin{bmatrix} Br \\ 0 \\ 0 \end{bmatrix} = 0.012$	
	$[Br_2]_{t1/2} = \frac{[Br_2]_{initiale}}{2} = \frac{0.012}{2} = 0.006 \text{ mol.L}^{-1}$	
	By projecting for the abscissa we get $t_{t/2} = 200$ sec	
3.5	At 450 sec, $V(CO_2) = 22.6$ ml . Applying the relation:	0.5
5.5	$[Br_2]_t = 0.012 - 4.$ $\boxtimes 60^{-4} V(CO_2)$	
	We get: $[Br_2]_t = 0.012 - 4$. $\boxtimes 60^{-4} \times 22.6 = 2.6 \times 10^{-3} \text{ mol.L}^{-1}$.	
	Some of the bromine liquid (brown in color) is still unreacted,	
	Thus, the obtained solution is not colorless.	
	Second Exercise (6 points)	

	Second	Exercise ((6)	points)	
--	--------	------------	-------------	---------	--

Part	Expected Answer	Mark		
1	Molecular Formula and Isomerism of (A)			
1.1	1 Determination of the molecular formula of (A):	1		
	nC= n CO ₂ = $\frac{\text{mCO}_2}{\text{MCO}_2} = \frac{6.60}{44}$ = 0.15 mol and m C = 0.15x12 = 1.8 g.			
	m H= $2x \frac{mH_2O}{MH_2O} xMH = \frac{2.7}{18} x^2 = 0.3 \text{ g and m } O = 3.7 - 1.8 - 03 =$			
	1.6 g.			
	Molar mass: M (A) = $32 \times 2.31 = 74 \text{ g.mol}^{-1}$.			
	The law of definite proportions allows to write:			
	$\frac{74}{3.70} = \frac{12x}{1.8} = \frac{1y}{0.3} = \frac{16 z}{1.6} C_x H_y O_z (A)$			
	We have:			

Г		
	$x = 3$; $y = 6$; $z = 2$ and the formula of (A) is: $C_3H_6O_2$.	
1.2	The condensed structural formulas of possible isomers are:	0.75
	$CH_3 - CH_2 - C - OH$; $H - C - O - CH_2 - CH_3$; $CH_3 - C - O - CH_2$	
	CH ₃	
	Ö Ö Ö	
2	Identification of (A)	
2.1		0.5
	1- The $pH = 3.1 < 7$, means that compound (A) reacts with water	
	giving a definitely acid medium, it is thus the propanoïc acid of	
	formula $CH_3 - CH_2 - COOH.$	0.05
2.2	The conjugate acid/base pair is: $CH_3CH_2COOH/CH_3CH_2COO^-$.	0.25
3	Reaction of dehydration of (A) and Synthesis of Ester (E)	0.75
3.1	The equation of the dehydration reaction of (A) is:	0.75
	$2 \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{C} - \operatorname{OH} \xrightarrow{P_2O_5} \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{C} - \operatorname{O} - \operatorname{C} - \operatorname{CH}_2 - \operatorname{CH}_3 + $	
	H_2O	
2.0	Compound (B) is propanoic anhydride.	0.5
3.2	According to the stoechiometric proportions of the equation, we have:	0.5
	n (anhydride)formed = $\frac{n(acid)reacting}{2} = \frac{m(A)}{2xM(A)} = \frac{111}{2x74} = 0.75$ mol.	
3.3.1		1
5.5.1	The equation of the reaction is: $CH_3 - CH_2 - C - O - C - CH_2 - CH_3 + CH_3 - CH - CH_2OH \rightarrow$	1
	ÖÖCH3	
	$CH_3 - CH_2 - C - O - CH_2 - CH - CH_3 + CH_3 - CH_2 - C - OH$	
	O CH ₃ O 2-methylpropyl propanoate	
3.3.2	This reaction is carried out in dry containers because the anhydride	0.5
0.012	reacts violently with water to give the corresponding acid.	
3.3.3	The number of moles of ester theoretically formed is equal to the	0.75
	number of moles of anhydride = 0.75 mol .	
	The number of moles of ester obtained in the experiment is:	
	n exp. = $\frac{m(E)}{M(E)} = \frac{90}{7x12 + 14 + 32} = 0.692$ mol.	
	The yield is: R = $\frac{n \exp}{n \text{ theoric}} = \frac{0.692}{0.75} = 0.92.$	
	Third Exercise (7 points)	

Third Exercise (7 points)

Part of the Q	Answer	
1	pH of an Ammonia Solution	
1.1	The equation of the reaction of ammonia with water is:	0.5
	$NH_3 + H_2O \Rightarrow HO^- + NH_4^+$	
1.2	The constant K_R : $K_R = \frac{[HO^-] [NH_4^+]}{[NH_3]} \cdot \frac{[H_3O^+]}{[H_3O^+]} = \frac{10^{-14}}{10^{-9,2}} = 10^{-4.8}$ $K_R = 1.58 \times 10^{-5}$.	0.5

1.2		0.5
1.3	$K_{R} = \frac{[HO^{-}]^{2}}{[NH_{3}]} = \frac{x^{2}}{0.1 - x} = 1.58 \times 10^{-5}$. We obtain:	0.5
	$[HO^{-}] = 1.26 \times 10^{-3} \text{ mol } \text{L}^{-1},$	
	$[H_3O^+] = 7.9 \times 10^{-12} \text{ mol } \text{L}^{-1}$ and pH = 11.1	
2	Preparation of an Ammonium Chloride Solution	
2.1	In order to prepare 500 mL of solution (B), the needed mass is:	1
	m = 0.1 x500x10 $^{-3}$ x53.5 = 2.675 g. Using the sensitive balance, the spatula and the watch glass, to	
	weigh 2.675 g of $NH_4Cl_{(s)}$. Introduce, using the funnel, this solid	
	into a volumetric flask of 500 mL, partially filled with distilled	
	water, shake to dissolve the solid, add more distilled water to fill	
	the volumetric flask till the line mark. Shake to homogenize.	
2.2	The equation of the reaction of the ammonium ion with water is:	1
	$NH_4^+ + H_2O \Rightarrow H_3O^+ + NH_3$	
	$K_R = \frac{[H_3O^+][NH_3]}{[NH_4^+]} = K_a = 10^{-9.2}$.	
	$\mathbf{K}_{\mathrm{R}} = \frac{\mathbf{K}_{\mathrm{R}}}{[\mathrm{NH}_{4}^{+}]} = \mathbf{K}_{\mathrm{a}} = 10$	
	The reaction is not complete.	
3	Preparation of a Buffer Solution	
3.1	Placement of the species on an axis of pK _a	0.5
	$HO^{-} 14 \clubsuit H_2O$	
	$\underline{\mathrm{NH}}_3 9.2 - \underline{\mathrm{NH}}_4^+$	
	<u>H_2O</u> 0 – H_3O^+	
	$H_2 O \bullet H_3 O$	
3.2	The most advanced reaction takes place between the strongest	0.5
	acid (NH_4^+) and the strongest base (NH_3) which are introduced.	
	The equation of this reaction is: $NH_4^+ + NH_3 \Rightarrow NH_4^+ + NH_3$.	
3.3	The preceding equation shows that the initial amounts of NH_4^+	0.75
	and NH $_3$ do not vary. Where:	
	C ₁ xV _A	
	pH =pK _a +log $\frac{[NH_3]}{[NH_4^+]}$ = pK _a +log $\frac{\frac{C_1 x V_A}{V}}{\frac{C_2 x V_B}{C_2 x V_B}}$ = 9.2 + log $\frac{0.1 x 60}{0.1 x 40}$ = 9.38.	
	$\frac{1}{[NH_4^+]} = p_1 x_a + \log \frac{1}{C_2 x V_B} = 9.2 + \log \frac{1}{0.1 x 40} = 9.36.$	
	V	
3.4.1	The equation of the reaction is:	0.5
	$\begin{array}{rcl} NH_3 + H_3O^+ & \rightarrow & H_2O + & NH_4^+. \\ n(NH_3)_{introduced} = 0.1x60x10^{-3} = 6x10^{-3} \text{ mol.} \end{array}$	
3.4.2		0.75

	n(H ₃ O ⁺) _{introduced} =10 ⁻³ mol. It is the limiting reactant. After reaction, 5x10 ⁻³ mol NH ₃ and (4x10 ⁻³ +10 ⁻³) mol of NH ₄ ⁺ = 5x10 ⁻³ mol of NH ₄ ⁺ are remained pH = 9.2 + log $\frac{5x10^{-3}}{V}$ = 9.2. the variation of the pH is not significant.	
	\overline{V} So the solution is buffer.	
3.4.3	The two other characteristics of solution (C) are : - The variation of pH is not significant upon dilution -The variation of the pH is not significant upon adding few amount of a base.	0.5