

نموذج مسابقة (يراعي تعليق الاروس والتوصيف المعدّل للعام الاراسي 2016-2017 وحتى صدور المناهج المطوّرة)
This test includes four mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 ($61 / 2$ points) Oscillations of a horizontal elastic pendulum

An elastic pendulum (R) is formed of a solid (S), of mass m, attached to the extremity A of a horizontal spring of stiffness $k=80 \mathrm{~N} / \mathrm{m}$; the other extremity B of the spring is attached to a fixed support as shown in the adjacent document (Doc 1).
The center of inertia G of the solid can move along a horizontal axis $\mathrm{x}^{\prime} \mathrm{x}$.
 At equilibrium, the center of inertia G of (S) is confounded with the origin O of the axis x 'x. We shift the solid from its equilibrium position and then we release it from rest at the instant $\mathrm{t}_{0}=0$. G starts oscillating on either side of its equilibrium position O .
At an instant t, the abscissa of G is x and the algebraic value of its velocity is $v=\frac{d x}{d t}=x^{\prime}$. The horizontal plane passing through G is the reference level of the gravitational potential energy.

1) Free undamped oscillations

We neglect the force of friction.
1-1) Write down, at an instant t, the expression of the mechanical energy of the system (pendulum -Earth).
1-2) Derive the second order differential equation in x that describes the motion of (S).
1-3) Deduce the expression of the proper period T_{0} of these oscillations.
2) Free damped oscillations

In reality, the friction force has a certain value. Taking into account the previous initial conditions, a device allows to register the variations of x as a function of time t as shown in the adjacent document (Doc 2).
2-1) Referring to the graph, determine the pseudo-period T of the oscillations.
2-2) Calculate the average power dissipated between the instants $\mathrm{t}_{0}=0$ and $\mathrm{t}_{1}=3 \mathrm{~T}$.

3) Forced oscillations

We connect now the extremity B of the spring to a vibrator of adjustable frequency f_{v} and of constant amplitude. We give f_{v} different values and we register, for every value of f_{v}, the corresponding value of the amplitude x_{m} of the oscillations of G as shown in the document (Doc 3) below.
(Doc 3)

$\mathrm{f}_{\mathrm{v}}(\mathrm{Hz})$	1.5	2	2.5	2.8	3	3.2	3.3	3.6	4	4.5
$\mathrm{X}_{\mathrm{m}}(\mathrm{cm})$	0.4	0.6	1	1.5	2.1	2.3	2	1.5	1	0.7

3-1) Referring to the table, determine the approximate value of the proper period of the oscillations of (R).
3-2) Determine the approximate value of m.
3-3) Sketch the graph giving the variation of x_{m} as a function of f_{v}.
3-4) Trace, with justification, the shape of the previous curve when the force of friction has a greater value.

Exercise 2 (7½ points)

Synchronous pendulums

1) Elastic pendulum

A spring, of force constant k and of negligible mass, is placed on a smooth horizontal table. The left end of the spring is fixed to a support and the right end is connected to the end of a massless string passing over a light pulley as shown in the adjacent document (Doc 4). A particle (S), of mass m , is tied to the other end of the string. At equilibrium, (S) is at O . Take the horizontal plane passing through O as the reference level of the gravitational potential energy and $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Neglect all resistive forces.
1-1) When (S) is at equilibrium, it coincides with the origin O of the vertical axis x 'ox, and the spring is extended by $\Delta \ell$.
Show that $\Delta \ell=\frac{\mathrm{mg}}{\mathrm{k}}$.

1-2) The particle, pulled down by 4 cm , is released from rest at the instant $\mathrm{t}_{0}=0$. At an instant t , the abscissa of the particle is x and the algebraic value of its velocity is $v=\frac{d x}{d t}=x^{\prime}$.
1-2-1) Show that, at an instant t , the expression of the mechanical energy of the system [(S), Earth, spring, string, pulley] is given by: $\mathrm{ME}=\frac{1}{2} \mathrm{k}(\Delta \ell+\mathrm{x})^{2}-\mathrm{mgx}+\frac{1}{2} \mathrm{mv}^{2}$.
1-2-2) Determine the second order differential equation, in x, that describes the motion of (S).
1-2-3) Deduce the expression of the proper angular frequency ω_{0} of the pendulum and give that of its proper period T_{0} in terms of $\Delta \ell$ and g .
1-2-4) Determine the time equation of the motion of (S) knowing that it is of the form: $\mathrm{x}=\mathrm{x}_{\mathrm{m}} \sin \left(\omega_{0} \mathrm{t}+\varphi\right)$.
2) Simple pendulum

A simple pendulum is formed of an inextensible and massless string of length L and a particle $\left(S^{\prime}\right)$ of mass m as shown in the adjacent document (Doc 5). Suspended in a proper way, (S^{\prime}) is shifted from its equilibrium position by an angular abscissa $\theta_{0}=0.10 \mathrm{rd}$, and then released from rest at the instant $t_{0}=0$. The pendulum performs oscillations of angular amplitude $\theta_{\mathrm{m}}=0.10 \mathrm{rd}$. At an instant t , the angular abscissa of the pendulum is θ and its angular velocity is $\theta^{\prime}=\frac{\mathrm{d} \theta}{\mathrm{dt}}$.
Take the horizontal plane passing through the equilibrium position of (S^{\prime}) at as the reference level of the gravitational potential energy and $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Neglect all resistive forces.
Take whenever needed, for small values of θ, (θ in rd): $\cos \theta=1-\frac{\theta^{2}}{2}$ or $\sin \theta=\theta$.
$\mathbf{2 - 1}$) Determine, at an instant t, the expression of the mechanical energy of the system (pendulum-Earth).
2-2) Determine the second order differential equation, in θ, that describes the motion of the pendulum.
2-3) Deduce the expression of the proper angular frequency ω_{0}^{\prime} of this pendulum and give that of its proper period T_{0} in terms of L and g .
2-4) Determine the time equation of the motion of the pendulum knowing that it is of the form: $\theta=\theta_{\mathrm{m}} \sin \left(\omega^{\prime} \mathrm{t}+\varphi^{\prime}\right)$.

3) Comparison

Compare the proper periods T_{0} and $\mathrm{T}^{\prime} 0$ of these pendulums and give the condition to be satisfied by an elastic pendulum and a simple pendulum to be synchronous.

Exercise 3 (6¹⁄2 points)

Sparks in a Car ignition system

The ability of a coil, to oppose rapid changes in current, makes it very useful for spark generation.
The engine of a car requires that the fuel-air mixture in each cylinder must be ignited at proper times. This is achieved by means of a spark plug, which essentially consists of a pair of electrodes separated, at a specific distance, by an air gap. By creating a large voltage (a few tens of thousands of volts) between the electrodes, a spark is formed across the gap, thereby igniting the fuel.
The coil of a car ignition system has an inductance $L=20 \mathrm{mH}$ and a resistance $\mathrm{r}=2 \Omega$.
The electromotive force of car battery is: $\mathrm{E}=12 \mathrm{~V}$.

1) Switch K is closed

The adjacent document (Doc 6) shows the circuit of a spark plug in a car where the resistor used for protection is of resistance $\mathrm{R}=4 \Omega$.
At the instant $\mathrm{t}_{0}=0$, the switch K of the circuit is closed.
1-1) The current in the branch of the spark plug is considered zero. Justify.
1-2) At an instant t, the circuit carries the current i. Using the law of addition of voltages, determine the differential equation in i.
1-3) Deduce, in steady state, the current I_{0} carried by
 the circuit.
1-4) Calculate the time needed by the current i to reach, practically, its maximum value I_{0} knowing that the time constant τ of the circuit is: $\tau=\frac{\mathrm{L}}{(\mathrm{R}+\mathrm{r})}$.
1-5) Calculate the maximum magnetic energy stored by the coil.
1-6) Determine, in steady state, the voltage across the air gap of the spark plug.
1-7) A spark is a visible disruptive discharge of electricity between two electrodes of high voltage. It is preceded by an ionization of the gas (air - fuel) then followed by a rapid heating effect that burns the fuel. Specify if sparks are created in the air gap during the growth of the current in the circuit.

2) Switch K is opened

2-1) When the switch K is opened, the current drops to zero during $1 \mu \mathrm{~s}$. Determine the voltage developed across the electrodes of the plug.
2-2) Specify if sparks are produced in the air gap.
2-3) The sparks in the air gap get weaker as the distance between the electrodes gets larger. Explain why the spark plug must be changed after being used for a long time.

Exercise 4 (7 points)

Nuclear reactions

Consider the following four reactions (1), (2), (3) and (4) and the masses of some nuclei.

	${ }_{1}^{1} \mathrm{H}$	${ }_{1}^{2} \mathrm{H}$	${ }_{1}^{3} \mathrm{H}$	${ }_{2}^{4} \mathrm{He}$	${ }_{0}^{1} \mathrm{n}$	${ }_{92}^{235} \mathrm{U}$	${ }_{54}^{140} \mathrm{Xe}$	${ }_{38}^{94} \mathrm{Sr}$
$\mathrm{m}(\mathrm{u})$	1.0073	2.0141	3.0155	4.0015	1.0087	235.0439	139.9216	93.9153

$1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}=931.5 \mathrm{MeV} / \mathrm{c}^{2} ; \quad \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \quad 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$.
${ }_{92}^{235} \mathrm{U} \rightarrow{ }_{90}^{231} \mathrm{Th}+{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}$
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{1}^{3} \mathrm{H}+{ }_{1}^{1} \mathrm{H}$
${ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}$
${ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+2\left({ }_{0}^{1} \mathrm{n}\right)$

1) Give the type of each of these four reactions.
2) Consider the reaction (1).

2-1) Calculate A and Z indicating the laws used.
2-2) Name the particle X and give its symbol.
3) The deuterium nuclei undergo the nuclear reactions (2) and (3).

3-1) Write the overall reaction (5) that takes place.
3-2) Determine, in MeV and in joule, the energy liberated by this reaction.
4) Consider the reaction (4).

4-1) Calculate, in u and in kg , the mass lost.
4-2) Determine the released energy.
4-3) The released energy by the atomic bomb dropped at Hiroshima was estimated to be the equivalent to 15 kilotons of dynamite or $63 \times 10^{12} \mathrm{~J}$.
4-3-1) Calculate the number of uranium- 235 nuclei that underwent fission in this bomb assuming that all of the fission reactions took place as reaction (4) from the energetic point of view.
4-3-2) Determine the mass of reacting uranium- 235 necessary to release this energy.
5) The combustion of a mass $m_{1}=1 \mathrm{~kg}$ of fuel oil liberates an amount of energy $\mathrm{E}=4.3 \times 10^{7} \mathrm{~J}$.

5-1) Determine the mass m_{2} of the deuterium nuclei and the mass m_{3} of uranium nuclei that may produce this energy.
5-2) Classify in ascending order the masses m_{1}, m_{2} and m_{3} and indicate the substance that is preferable to be used to obtain energy, regardless of other factors.

	الهيئة الأكاديميّة المشتركة قسم: اللطوم	

أسس النصحيح (تُراعي تُعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Exercise 1 ($\mathbf{6}^{1 ⁄ 2}$ points)

Oscillations of a horizontal elastic pendulum

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1-1 \& \[
\begin{aligned}
\& \mathrm{ME}=\mathrm{KE}+\mathrm{PE} \quad \forall \mathrm{t} \\
\& \mathrm{ME}=1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{kx}^{2} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& 1 / 4 \\
\& 1 / 4
\end{aligned}
\] \\
\hline 1-2 \& \begin{tabular}{l}
There is no friction, so the mechanical energy of the system is conserved \\
Then ME \(=\) constant \(\quad \forall \mathrm{t}\)
\[
\begin{aligned}
\& \frac{\mathrm{dME}}{\mathrm{dt}}=\mathrm{mvv}^{\prime}+\mathrm{kxx}^{\prime}=0 \quad \forall \mathrm{t} \\
\& \mathrm{mx} \\
\& \mathrm{x}^{\prime}\left(\mathrm{x}^{\prime \prime}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}\right)=0 \quad \forall \mathrm{t}
\end{aligned}
\] \\
The product of two physical quantities is always nil, but \(m x\) ' is not always nil, we get: \(x^{\prime \prime}+\frac{k}{m} x=0\)
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 1-3 \& | The differential equation is of the form $\mathrm{x} "+\omega_{0}{ }^{2} \mathrm{x}=0$ |
| :--- |
| The oscillator undergoes simple harmonic oscillation of proper angular frequency $\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ the proper period is thus: $\mathrm{T}_{0}=\frac{2 \pi}{\omega_{0}}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}$ | \& $1 / 4$

$1 / 4$

\hline 2-1 \& Using the graph, $3 \mathrm{~T}=0.98$ then $\mathrm{T}=0.326 \mathrm{~s}$ \& 1/2

\hline 2-2 \& | for $\mathrm{t}_{0}=0, \mathrm{x}_{0}=2.6 \mathrm{~cm}, \mathrm{ME}_{0}=1 / 2 \mathrm{kx}_{0}{ }^{2}=0.02704 \mathrm{~J}$ |
| :--- |
| ($\mathrm{KE}_{0}=0$ because the elongation is maximum); |
| for $\mathrm{t}=3 \mathrm{~T}, \mathrm{x}=1.8 \mathrm{~cm}, \mathrm{ME}=1 / 2 \mathrm{kx}^{2}=0.01296 \mathrm{~J}$ |
| ($\mathrm{KE}=0$ because the elongation is maximum); $\mathrm{P}_{\mathrm{av}} \text { diss }=\frac{\text { Energy lost }}{\text { duration }}=\frac{0.02704-0.01296}{0.98}=0.0144 \mathrm{~W}$ | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline 3-1 \& | Referring to the graph, damping is relatively very weak. In this case, the resonant frequency is too close to the proper frequency of the pendulum. |
| :--- |
| f_{0} corresponds to the highest amplitude, $\mathrm{f}_{0}=3.2 \mathrm{~Hz}$, thus, $\mathrm{T}_{0}=1 / \mathrm{f}_{0}=0.3125 \mathrm{~s}$ | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$
\]

\hline 3-2 \& $$
\mathrm{T}_{0}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} ; \mathrm{m}=\frac{\mathrm{T}_{0}{ }^{2} \times \mathrm{k}}{4 \pi^{2}}=\frac{(0.3125)^{2} \times 80}{4 \pi^{2}}=0.198 \mathrm{~kg}
$$ \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline 3-3 \& \& 1/2

\hline
\end{tabular}

Exercise 2 (7½ points) Synchronous pendulums

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1-1 \& The Particle S is at equilibrium: \(\mathrm{W}=\mathrm{T}\) \(\mathrm{mg}=\mathrm{k} \Delta \ell \Rightarrow \Delta \ell=\frac{\mathrm{mg}}{\mathrm{k}}\) \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \\
\hline 1-2-1 \& \(\mathrm{ME}=\mathrm{KE}+\mathrm{PE}_{\mathrm{g}}+\mathrm{PE}_{\mathrm{e}}=1 / 2 \mathrm{k}(\Delta \ell+\mathrm{x})^{2}-\mathrm{mgx}+1 / 2 \mathrm{mv}^{2}\) \& 1/2 \\
\hline 1-2-2 \& \begin{tabular}{l}
There is no friction thus ME is conserved
\[
\begin{aligned}
\& \mathrm{ME}=1 / 2 \mathrm{k} \Delta \ell^{2}+1 / 2 \mathrm{kx}^{2}+\mathrm{kx} \Delta \ell-\mathrm{mgx}+1 / 2 \mathrm{mv}^{2}=\text { constant } \quad \forall \mathrm{t}(\mathrm{k} \Delta \ell=\mathrm{mg}) \\
\& \frac{\mathrm{dME}}{\mathrm{dt}}=0+\mathrm{kxx}^{\prime}+\mathrm{mvv}^{\prime}=0 \quad \forall \mathrm{t} \Rightarrow \mathrm{mx}^{\prime}\left(\mathrm{x}^{\prime}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}\right)=0 \quad \forall \mathrm{t}
\end{aligned}
\] \\
The product of two physical quantities is always nil, but mx ' is not always nil, we get: \(x^{\prime \prime}+\frac{k}{m} x=0\)
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 1-2-3 \& | The differential equation is of the form $\mathrm{x} "+\omega_{0}{ }^{2} \mathrm{x}=0$ |
| :--- |
| The oscillator undergoes simple harmonic oscillations of proper angular frequency $\omega_{0}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ the proper period is thus: $\mathrm{T}_{0}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \mathrm{T}_{0}=2 \pi \sqrt{\frac{\Delta \ell}{\mathrm{~g}}}$ | \& $1 / 4$

$1 / 4$

\hline 1-2-4 \& $$
\begin{aligned}
& \omega_{0}=\sqrt{\frac{k}{m}} \\
& x=x_{m} \sin \left(\omega_{0} t+\varphi\right) ; v=x_{m} \omega_{0} \cos \left(\omega_{0} t+\varphi\right) ; \\
& \text { at } t_{0}=0: x_{0}=x_{m} \sin (\varphi)>0 \text { and } v_{0}=x_{m} \omega_{0} \cos (\varphi)=0 \text { then } \varphi=\frac{\pi}{2} r d \\
& x_{0}=x_{m}=4 \mathrm{~cm} . \\
& x=4 \sin \left(\sqrt{\frac{k}{m}} t+\frac{\pi}{2}\right) ;(t \text { in } s \text { and } x \text { in } c m)
\end{aligned}
$$ \& $1 / 4$

$1 / 4$
$1 / 4$

$1 / 4$

\hline 2-1 \& $$
\begin{aligned}
& \mathrm{ME}=\mathrm{PE}_{\mathrm{g}}+\mathrm{KE} \\
& \mathrm{ME}=\mathrm{mgh}+1 / 2 \mathrm{I} \theta^{\prime 2}=\operatorname{mgL}(1-\cos \theta)+1 / 2 \mathrm{I} \theta^{\prime 2} \\
& \mathrm{Knowing} \text { that } \theta=0.1 \mathrm{rd}<6^{\circ}, \cos \theta=1-\frac{\theta^{2}}{2} \\
& \mathrm{ME}=1 / 2 \mathrm{mgL} \theta^{2}+1 / 2 \mathrm{~mL}^{2} \theta^{\prime 2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 / 4 \\
& 1 / 4 \\
& 1 / 2
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 2-2 \& $$
\begin{aligned}
& \text { ME }=1 / 2 \mathrm{mgL} \theta^{2}+1 / 2 \mathrm{~mL}^{2} \theta^{\prime 2}=\text { constant } \quad \forall \mathrm{t} \\
& \frac{\mathrm{dME}}{\mathrm{dt}}=0 \text { then: } \mathrm{mgL} \theta \theta^{\prime}+\mathrm{mL}^{2} \theta^{\prime} \theta^{\prime \prime}=0 ; \\
& \mathrm{mL} \theta^{\prime} \text { is not always nil } \\
& \mathrm{g} \theta+\mathrm{L} \theta^{\prime \prime}=0 \Rightarrow \theta^{\prime \prime}+(\mathrm{g} / \mathrm{L}) \theta=0
\end{aligned}
$$ \& $1 / 4$

$1 / 2$

\hline 2-3 \& | The differential equation has the form to $\theta^{\prime \prime}+\omega^{\prime} 0^{2} \theta=0$ The oscillator undergoes simple harmonic oscillation of proper angular frequency ω_{0}^{\prime} with $\omega_{0}^{\prime}{ }^{2}=\frac{\mathrm{g}}{\mathrm{L}}$, thus, $\omega_{0}^{\prime}=\sqrt{\frac{\mathrm{g}}{\mathrm{L}}}$ |
| :--- |
| The proper period is thus: $\mathrm{T}_{0}^{\prime}=\frac{2 \pi}{\omega^{\prime}}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}$ | \& 1/2

\hline 2-4 \& $$
\begin{aligned}
& \theta=\theta_{\mathrm{m}} \sin \left(\omega_{0}^{\prime} \mathrm{t}+\varphi^{\prime}\right) ; \theta^{\prime}=\theta_{\mathrm{m}}^{\prime} \omega^{\prime} 0 \cos \left(\omega^{\prime} \mathrm{t}+\varphi^{\prime}\right) ; \\
& \text { at } \mathrm{t}_{0}=0: \theta_{0}=\theta_{\mathrm{m}} \sin \left(\varphi^{\prime}\right)>0 \text { and } \theta_{0}^{\prime}=\theta_{\mathrm{m}} \omega^{\prime} 0 \cos \left(\varphi^{\prime}\right)=0 \text { then } \varphi^{\prime}=\frac{\pi}{2} \mathrm{rd} \\
& \theta_{0}=\theta_{\mathrm{m}}=0,1 \mathrm{rd} \\
& \theta=0.1 \sin \left(\sqrt{\frac{\mathrm{~g}}{\mathrm{~L}}} \mathrm{t}+\frac{\pi}{2}\right) ;(\mathrm{t} \text { in } \mathrm{s} \text { and } \theta \text { in rd })
\end{aligned}
$$ \& $1 / 4$

$1 / 4$

$1 / 4$

\hline 3 \& | $\mathrm{T}_{0}=2 \pi \sqrt{\frac{\Delta \ell}{\mathrm{~g}}} \text { and } \mathrm{T}_{0}^{\prime}=2 \pi \sqrt{\frac{\mathrm{~L}}{\mathrm{~g}}}$ |
| :--- |
| The two pendulums are synchronous, $\mathrm{T}_{0}=\mathrm{T}^{\prime}{ }_{0} \Rightarrow \Delta \ell=\mathrm{L}$ | \& 1/2

\hline
\end{tabular}

Exercise 3 ($61 / 2$ points) Sparks in a Car ignition system

Question	Answer	Mark
1-1	Since the branch of the spark plug is an open circuit due to the air gap	1/2
1-2	$\begin{aligned} & u_{A C}=u_{A B}+u_{B C} ; E=R i+(r i+L d i / d t) \\ & \frac{E}{L}=\frac{(R+r)}{L} i+\frac{d i}{d t} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
1-3	In steady state: $\mathrm{i}=\mathrm{I}_{0}=$ constant $\begin{aligned} & \frac{\mathrm{E}}{\mathrm{~L}}=\frac{(\mathrm{R}+\mathrm{r})}{\mathrm{L}} \mathrm{I}_{0}+\frac{\mathrm{di}}{\mathrm{dt}},(\mathrm{di} / \mathrm{dt}=0) \\ & \mathrm{E}=(\mathrm{R}+\mathrm{r}) \mathrm{I}_{0} \Rightarrow \mathrm{I}_{0}=\mathrm{E} /(\mathrm{R}+\mathrm{r})=12 / 6=2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
1-4	$\Delta \mathrm{t}=5 \tau=5 \frac{\mathrm{~L}}{(\mathrm{R}+\mathrm{r})}=5 \times 0.02 / 6=0.0167 \mathrm{~s}$	1/2
1-5	$\mathrm{E}_{\mathrm{mag}}(\max)=1 / 2 \mathrm{LI}_{0}{ }^{2}=1 / 2 \times 0.02 \times 2^{2}=0.04 \mathrm{~J}$	1/2
1-6	$\mathrm{u}_{\text {air gap }}=\mathrm{u}_{\mathrm{BC}}=\mathrm{rI}_{0}=2 \times 2=4 \mathrm{~V}$	1/2
1-7	No since $\mathrm{u}_{\text {air gap }}=4 \mathrm{~V}$ is small.	1/2
2-1	The average induced e.m.f. is: $\mathrm{e}_{\mathrm{av}}=-\mathrm{L}(\Delta \mathrm{i} / \Delta \mathrm{t})=-0.02 \times(0-2) / 10^{-6}=40000 \mathrm{~V}$ $\Rightarrow\left\|u_{\text {airgap }}\right\|=u_{C B} \approx 40000 \mathrm{~V}$ (since ri is assumed very small).	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$
2-2	Yes, sparks are produced in the gap because the voltage is very high.	1/2
2-3	The sparks produced in the air gap will melt gradually the electrodes of the spark plug; this causes an increase in the distance between them and consequently the sparks get fainter and then the plug must be replaced by a new one.	1/2

Exercise 4 (7 points)
Nuclear reactions

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1 \& \begin{tabular}{l}
(1): Natural radioactivity \\
(2): and (3): fusion \\
(4): fission
\end{tabular} \& \[
\begin{aligned}
\& 1 / 4 \\
\& 1 / 2 \\
\& 1 / 4 \\
\& \hline
\end{aligned}
\] \\
\hline 2-1 \& \begin{tabular}{l}
By applying Soddy's laws: \\
Conservation of the mass number: \(235=231+\mathrm{A} \Rightarrow \mathrm{A}=4\) \\
Conservation of the charge number: \(92=90+Z \Rightarrow Z=2\)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 4 \\
\& 1 / 4 \\
\& 1 / 4 \\
\& \hline
\end{aligned}
\] \\
\hline 2-2 \& This particle is the helium-4 nucleus; its symbol is \({ }_{2}^{4} \mathrm{He}\). \& 1/4 \\
\hline 3-1 \& Adding 2 and 3 we obtain:
\[
\begin{aligned}
\& 3{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{3} \mathrm{H}+{ }_{1}^{1} \mathrm{H}+{ }_{0}^{1} \mathrm{n} \\
\& 3{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{1} \mathrm{H}+{ }_{0}^{1} \mathrm{n}
\end{aligned}
\] \& 1/2 \\
\hline 3-2 \& \[
\begin{aligned}
\& \mathrm{E}_{\text {Libb }}=\Delta \mathrm{m} \cdot \mathrm{c}^{2}=[(3 \times 2.0141)-(4.0015+1.0073+1.0087)] \times 931.5 \\
\& \mathrm{E}_{\text {Lib }}=0.0248 \times 931.5=23.1012 \mathrm{MeV}=3.696 \times 10^{-12} \mathrm{~J}
\end{aligned}
\] \& 1/2 \\
\hline 4-1 \& \[
\begin{aligned}
\& \Delta \mathrm{m}=[(1.0087+235.0439)-(139.9216+93.9153+2(1.0087))] \\
\& \Delta \mathrm{m}=0.1983 \mathrm{u}=0.1983 \times 1.66 \times 10^{-27}=3.292 \times 10^{-28} \mathrm{~kg} \\
\& \hline
\end{aligned}
\] \& 1/2 \\
\hline 4-2 \& \[
\begin{aligned}
\& \mathrm{E}_{\text {Lib }}=\Delta \mathrm{m} . \mathrm{c}^{2}=0.1983 \times 931.5=184.72 \mathrm{MeV}=184.72 \times 1.66 \times 10^{-13} \mathrm{~J} \\
\& \mathrm{E}_{\text {Lib }}=29.56 \times 10^{-12} \mathrm{~J}
\end{aligned}
\] \& 1/2 \\
\hline 4-3-1 \& \begin{tabular}{l}
1 nucleus liberates \(29.56 \times 10^{-12} \mathrm{~J}\) \\
N nuclei liberate \(\quad 63 \times 10^{12} \mathrm{~J}\) \\
\(\mathrm{N}=2.131 \times 10^{24}\) nuclei
\end{tabular} \& 1/2 \\
\hline 4-3-2 \& \begin{tabular}{l}
The mass lost of \(3.292 \times 10^{-28} \mathrm{~kg}\) corresponds to 1 nucleus \\
The mass lost of \(\quad \Delta \mathrm{m}_{\text {total }}\) corresponds to \(2.131 \times 10^{24}\) nuclei \\
Then \(\Delta \mathrm{m}_{\text {total }}=0.0007 \mathrm{~kg}\) \\
The mass lost of \(3.292 \times 10^{-28} \mathrm{~kg}\) corresponds to 1 nucleus of mass 235.0439 u The mass lost of \(\quad 0.0007 \mathrm{~kg}\) corresponds to N nuclei of mass \(\mathrm{m}_{\mathrm{t}}\) Then the mass of the used uranium is: \(\mathrm{m}_{\mathrm{t}}=4.99 \times 10^{26} \mathrm{u}=0.83 \mathrm{~kg}\).
\end{tabular} \& \(1 / 2\)

$1 / 2$

\hline 5-1 \& | For the deuterium nuclei: $3 \mathrm{~m}\left({ }_{1}^{2} \mathrm{H}\right)=6.0423 \mathrm{u}=10.03 \times 10^{-27} \mathrm{~kg} \text { gives } 36.96 \times 10^{-13} \mathrm{~J}$ $\mathrm{m}_{2} \text { gives } 4.3 \times 10^{7} \mathrm{~J}$ |
| :--- |
| Then we need $\mathrm{m}_{2}=4.3 \times 10^{7} \times 10.03 \times 10^{-27} / 36.96 \times 10^{-13}=1.1669 \times 10^{-7} \mathrm{~kg}$ |
| For the uranium nuclei: $\begin{array}{r} \mathrm{m}_{\mathrm{U}}=235.0439 \mathrm{u}=3.9 \times 10^{-25} \mathrm{~kg} \text { gives } 29.56 \times 10^{-12} \mathrm{~J} \\ \mathrm{~m}_{3} \text { gives } 4.3 \times 10^{7} \mathrm{~J} \end{array}$ |
| Then we need $\mathrm{m}_{3}=4.3 \times 10^{7} \times 3.9 \times 10^{-25} / 29.56 \times 10^{-12}=5.67 \times 10^{-7} \mathrm{~kg}$ | \& $1 / 2$

$1 / 2$

\hline 5-2 \& | To liberate the same quantity of energy, $4.3 \times 10^{7} \mathrm{~J}$, we need: Fuel: $\mathrm{m}_{1}=1 \mathrm{~kg}$ |
| :--- |
| Deuterium nuclei: $\mathrm{m}_{2}=1.1669 \times 10^{-7} \mathrm{~kg}$ |
| Uranium nuclei: $\mathrm{m}_{3}=5.67 \times 10^{-7} \mathrm{~kg}$ $\mathrm{m}_{2}<\mathrm{m}_{3}<\mathrm{m}_{1}$ |
| We prefer using deuterium nuclei. | \& 1/2

\hline
\end{tabular}

