

This test includes four mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 (6¹/₂ points)

Oscillations of a horizontal elastic pendulum

An elastic pendulum (R) is formed of a solid (S), of mass m, attached to the extremity A of a horizontal spring of stiffness k = 80 N/m; the other extremity B of the spring is attached to a fixed support as shown in the adjacent document (Doc 1).

The center of inertia G of the solid can move along a horizontal axis x'x. At equilibrium, the center of inertia G of (S) is confounded with the origin

O of the axis x'x. We shift the solid from its equilibrium position and then we release it from rest at the instant $t_0 = 0$. G starts oscillating on either side of its equilibrium position O.

At an instant t, the abscissa of G is x and the algebraic value of its velocity is $v = \frac{dx}{dt} = x'$.

The horizontal plane passing through G is the reference level of the gravitational potential energy.

Free undamped oscillations 1)

We neglect the force of friction.

- **1-1**) Write down, at an instant t, the expression of the mechanical energy of the system (pendulum -Earth).
- **1-2**) Derive the second order differential equation in x that describes the motion of (S).
- **1-3**) Deduce the expression of the proper period T_0 of these oscillations.

2) **Free damped oscillations**

In reality, the friction force has a certain value. Taking into account the previous initial conditions, a device allows to register the variations of x as a function of time t as shown in the adjacent document (Doc 2).

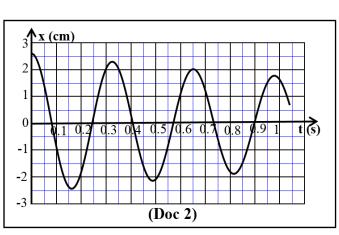
- **2-1**) Referring to the graph, determine the pseudo-period T of the oscillations.
- **2-2**) Calculate the average power dissipated between the instants $t_0 = 0$ and $t_1 = 3T$.

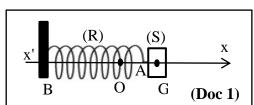
3) **Forced oscillations**

We connect now the extremity B of the spring to a vibrator of adjustable frequency f_v and of constant amplitude. We give f_v different values and we register, for every value of f_v , the corresponding value of the amplitude x_m of the oscillations of G as shown in the document (Doc 3) below.

(Doc 3)	f _v (Hz)	1.5	2	2.5	2.8	3	3.2	3.3	3.6	4	4.5
(Doc 3)	X _m (cm)	0.4	0.6	1	1.5	2.1	2.3	2	1.5	1	0.7

- **3-1**) Referring to the table, determine the approximate value of the proper period of the oscillations of (R).
- **3-2**) Determine the approximate value of m.
- **3-3**) Sketch the graph giving the variation of x_m as a function of f_v .
- **3-4)** Trace, with justification, the shape of the previous curve when the force of friction has a greater value.





Exercise 2 (7¹/₂ points) Synchronous pendulums

1) Elastic pendulum

A spring, of force constant k and of negligible mass, is placed on a smooth horizontal table. The left end of the spring is fixed to a support and the right end is connected to the end of a massless string passing over a light pulley as shown in the adjacent document (Doc 4). A particle (S), of mass m, is tied to the other end of the string. At equilibrium, (S) is at O. Take the horizontal plane passing through O as the reference level of the gravitational potential energy and $g = 10 \text{ m/s}^2$. Neglect all resistive forces.

- 1-1) When (S) is at equilibrium, it coincides with the origin O of the vertical axis x'ox, and the spring is extended by $\Delta \ell$. Show that $\Delta \ell = \frac{mg}{k}$.
- 1-2) The particle, pulled down by 4 cm, is released from rest at the instant $t_0 = 0$. At an instant t, the abscissa of the particle is x and the algebraic value of its velocity is $v = \frac{dx}{dt} = x'$.
 - **1-2-1**) Show that, at an instant t, the expression of the mechanical energy of the system [(S), Earth, spring, string, pulley] is given by: $ME = \frac{1}{2}k(\Delta \ell + x)^2 mgx + \frac{1}{2}mv^2$.
 - 1-2-2) Determine the second order differential equation, in x, that describes the motion of (S).
 - **1-2-3**) Deduce the expression of the proper angular frequency ω_0 of the pendulum and give that of its proper period T_0 in terms of $\Delta \ell$ and g.
 - 1-2-4) Determine the time equation of the motion of (S) knowing that it is of the form: $x = x_m sin(\omega_0 t + \phi).$

2) Simple pendulum

A simple pendulum is formed of an inextensible and massless string of length L and a particle (S') of mass m as shown in the adjacent document (Doc 5). Suspended in a proper way, (S') is shifted from its equilibrium position by an angular abscissa $\theta_0 = 0.10$ rd, and then released from rest at the instant $t_0 = 0$. The pendulum performs oscillations of angular amplitude $\theta_m = 0.10$ rd. At an instant t, the angular abscissa of the pendulum is θ and its angular velocity is $\theta' = \frac{d\theta}{dt}$.

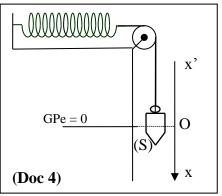
Take the horizontal plane passing through the equilibrium position of (S') at as the reference level of the gravitational potential energy and $g = 10 \text{ m/s}^2$. Neglect all resistive forces.

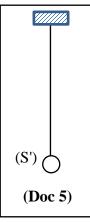
Take whenever needed, for small values of θ , (θ in rd): $\cos \theta = 1 - \frac{\theta^2}{2}$ or $\sin \theta = \theta$.

- **2-1**) Determine, at an instant t, the expression of the mechanical energy of the system (pendulum-Earth).
- **2-2**) Determine the second order differential equation, in θ , that describes the motion of the pendulum.
- 2-3) Deduce the expression of the proper angular frequency ω'_0 of this pendulum and give that of its proper period T'₀ in terms of L and g.
- 2-4) Determine the time equation of the motion of the pendulum knowing that it is of the form: $\theta = \theta_m \sin(\omega'_0 t + \varphi').$

3) Comparison

Compare the proper periods T_0 and T'_0 of these pendulums and give the condition to be satisfied by an elastic pendulum and a simple pendulum to be synchronous.





Exercise 3 (6¹/₂ points) Sparks in a Car ignition system

The ability of a coil, to oppose rapid changes in current, makes it very useful for spark generation.

The engine of a car requires that the fuel-air mixture in each cylinder must be ignited at proper times. This is achieved by means of a spark plug, which essentially consists of a pair of electrodes separated, at a specific distance, by an air gap. By creating a large voltage (a few tens of thousands of volts) between the electrodes, a spark is formed across the gap, thereby igniting the fuel.

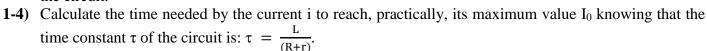
The coil of a car ignition system has an inductance L = 20 mH and a resistance $r = 2 \Omega$. The electromotive force of car battery is: E = 12 V.

1) Switch K is closed

The adjacent document (Doc 6) shows the circuit of a spark plug in a car where the resistor used for protection is of resistance $R=4\Omega$.

At the instant $t_0 = 0$, the switch K of the circuit is closed.

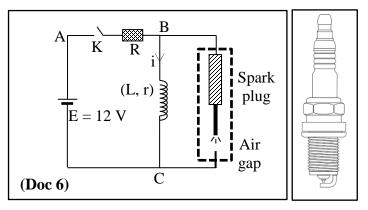
- **1-1**) The current in the branch of the spark plug is considered zero. Justify.
- **1-2)** At an instant t, the circuit carries the current i. Using the law of addition of voltages, determine the differential equation in i.
- **1-3)** Deduce, in steady state, the current I₀ carried by the circuit.



- **1-5)** Calculate the maximum magnetic energy stored by the coil.
- **1-6)** Determine, in steady state, the voltage across the air gap of the spark plug.
- **1-7)** A spark is a visible disruptive discharge of electricity between two electrodes of high voltage. It is preceded by an ionization of the gas (air fuel) then followed by a rapid heating effect that burns the fuel. Specify if sparks are created in the air gap during the growth of the current in the circuit.

2) Switch K is opened

- **2-1**) When the switch K is opened, the current drops to zero during 1 µs. Determine the voltage developed across the electrodes of the plug.
- **2-2**) Specify if sparks are produced in the air gap.
- **2-3)** The sparks in the air gap get weaker as the distance between the electrodes gets larger. Explain why the spark plug must be changed after being used for a long time.



Exercise 4 (7 points) Nuclear reactions

Consider the following four reactions (1), (2), (3) and (4) and the masses of some nuclei.

	$^{1}_{1}\mathrm{H}$	$^{2}_{1}\mathrm{H}$	$^{3}_{1}\mathrm{H}$	⁴ ₂ He	${}^{1}_{0}n$	²³⁵ ₉₂ U	¹⁴⁰ ₅₄ Xe	$^{94}_{38}$ Sr
m(u)	1.0073	2.0141	3.0155	4.0015	1.0087	235.0439	139.9216	93.9153
1 u = 1.66 x 10^{-27} kg = 931.5 MeV/c ² ;			$c = 3 \times 10^{8}$	m/s;	1 eV=1.6×1	0 ⁻¹⁹ J.		
$^{235}_{92}U \rightarrow ^{231}_{90}Th + ^{A}_{Z}X$			(1)					
$^{2}_{1}H + ^{2}_{1}H \rightarrow ^{3}_{1}H + ^{1}_{1}H$			(2)					
$^{2}_{1}\text{H} + ^{3}_{1}\text{H} \rightarrow ^{4}_{2}\text{He} + ^{1}_{0}\text{n}$				(3)				
${}^{1}_{0}n + {}^{235}_{92}U \rightarrow {}^{140}_{54}Xe + {}^{94}_{38}Sr + 2({}^{1}_{0}n)$			(4)					
1) Give the type of each of these four reactions								

- 1) Give the type of each of these four reactions.
- 2) Consider the reaction (1).

3)

- **2-1**) Calculate A and Z indicating the laws used.
- **2-2**) Name the particle X and give its symbol.
- The deuterium nuclei undergo the nuclear reactions (2) and (3).
- **3-1**) Write the overall reaction (5) that takes place.
- **3-2**) Determine, in MeV and in joule, the energy liberated by this reaction.
- 4) Consider the reaction (4).
 - **4-1**) Calculate, in u and in kg, the mass lost.
 - **4-2**) Determine the released energy.
 - **4-3)** The released energy by the atomic bomb dropped at Hiroshima was estimated to be the equivalent to 15 kilotons of dynamite or 63×10^{12} J.
 - **4-3-1**) Calculate the number of uranium-235 nuclei that underwent fission in this bomb assuming that all of the fission reactions took place as reaction (4) from the energetic point of view.
 - **4-3-2**) Determine the mass of reacting uranium-235 necessary to release this energy.
- 5) The combustion of a mass $m_1 = 1$ kg of fuel oil liberates an amount of energy $E = 4.3 \times 10^7$ J.
 - **5-1**) Determine the mass m₂ of the deuterium nuclei and the mass m₃ of uranium nuclei that may produce this energy.
 - **5-2**) Classify in ascending order the masses m₁, m₂ and m₃ and indicate the substance that is preferable to be used to obtain energy, regardless of other factors.

المادة: الفيزياء الشهادة: الثانوية العامَة	الهيئة الأكاديميّة المشتركة	
الفرع: العلوم العامة	قسم: العلوم	
نموذج رقم 2 المدّة: ثلاث ساعات		المركز النزبوي ليجوث والانمار

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-7/20 وحتى صدور المناهج المطوّرة)

Exercise 1 (6¹/₂ points) Oscillations of a horizontal elastic pendulum

Question	Answer	Mark
1-1	$ME = KE + PE \forall t$	1⁄4
	$ME = \frac{1}{2} mv^2 + \frac{1}{2} kx^2$	1⁄4
1-2	There is no friction, so the mechanical energy of the system is conserved Then ME = constant $\forall t$ $\frac{dME}{dt} = mvv' + kxx' = 0 \forall t$ $mx'\left(x'' + \frac{k}{m}x\right) = 0 \forall t$ The product of two physical quantities is always nil, but mx' is not always nil,	1⁄2
	we get: $x'' + \frac{k}{m}x = 0$	1⁄2
1-3	The differential equation is of the form $x'' + \omega_0^2 x = 0$ The oscillator undergoes simple harmonic oscillation of proper angular frequency $\omega_0 = \sqrt{\frac{k}{m}}$	1/4
	the proper period is thus: $T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}}$	1⁄4
2-1	Using the graph, $3 T = 0.98$ then $T = 0.326$ s	1⁄2
2-2	for t ₀ = 0, x ₀ =2.6 cm, ME ₀ = $\frac{1}{2}$ kx ₀ ² = 0.02704 J (KE ₀ = 0 because the elongation is maximum); for t = 3T, x = 1.8 cm, ME = $\frac{1}{2}$ kx ² = 0.01296 J (KE = 0 because the elongation is maximum); $P_{av diss} = \frac{Energy lost}{duration} = \frac{0.02704 - 0.01296}{0.98} = 0.0144$ W	1/2 1/2
3-1	Referring to the graph, damping is relatively very weak. In this case, the resonant frequency is too close to the proper frequency of the pendulum. f_0 corresponds to the highest amplitude, $f_0 = 3.2$ Hz, thus, $T_0 = 1/f_0 = 0.3125$ s	1/2 1/2
3-2	$T_0 = 2\pi \sqrt{\frac{m}{k}}; m = \frac{T_0^2 \times k}{4\pi^2} = \frac{(0.3125)^2 \times 80}{4\pi^2} = 0.198 \text{ kg}$	1/2 1/2
3-3	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}$	1⁄2

3-4	When the force of friction increases,	25	
	the maximum value of the amplitude of		
	the curve of resonance becomes smaller	₩ [#] 2	
	(the bandwidth larger and the resonance		
	frequency smaller).	1.5	
	When the force of friction becomes		
	greater, the phenomenon of resonance		
	disappears, and (S) is then sensitive to	0.5	
	a large band of frequencies, the		
	bandwidth becomes larger.		1⁄2
	Remark: The shape of the curve must be	f _v (Hz)	
	in accordance with the initial conditions		
	and in respect for the problem situation.		

Exercise 2 (7 ¹ / ₂ points)) Synchronous pen
EACT CISC $\Delta (1/2)$ points) Syncin onous pen

Question	Answer	Mark
1-1	The Particle S is at equilibrium: $W = T$	1/2
	$mg = k\Delta \ell \implies \Delta \ell = \frac{mg}{k}$	1⁄2
1-2-1	$ME = KE + PE_g + PE_e = \frac{1}{2} k(\Delta \ell + x)^2 - mgx + \frac{1}{2} mv^2$	1/2
1-2-2	There is no friction thus ME is conserved	
	$ME = \frac{1}{2} k\Delta \ell^2 + \frac{1}{2} kx^2 + kx\Delta \ell - mgx + \frac{1}{2} mv^2 = constant \forall t \ (k \ \Delta \ell = mg)$	
	$\frac{dME}{dt} = 0 + kxx' + mvv' = 0 \forall t \implies mx' \left(x'' + \frac{k}{m} x \right) = 0 \forall t$	1⁄2
	The product of two physical quantities is always nil, but mx' is not always nil,	
	we get: $x'' + \frac{k}{k}x = 0$	
	we get: $x + - x = 0$ m	1/2
1-2-3	The differential equation is of the form $x'' + \omega_0^2 x = 0$	/2
123	The oscillator undergoes simple harmonic oscillations of proper angular $x^{2} = 0$	
	frequency $\omega_0 = \sqrt{\frac{k}{m}}$	1⁄4
	the proper period is thus: $T_0 = 2\pi \sqrt{\frac{m}{k}} T_0 = 2\pi \sqrt{\frac{\Delta \ell}{g}}$	1⁄4
1-2-4	$\omega_0 = \sqrt{\frac{\mathbf{k}}{\mathbf{m}}}$	1⁄4
	$x = x_m \sin(\omega_0 t + \phi); v = x_m \omega_0 \cos(\omega_0 t + \phi);$	1⁄4
	at $t_0 = 0$: $x_0 = x_m \sin(\phi) > 0$ and $v_0 = x_m \omega_0 \cos(\phi) = 0$ then $\phi = \frac{\pi}{2} rd$	1⁄4
	$x_0 = x_m = 4 \text{ cm.}$	
	$x = 4\sin(\sqrt{\frac{k}{m}}t + \frac{\pi}{2});$ (t in s and x in cm)	1⁄4
2-1	$ME = PE_g + KE$	1⁄4
	$ME = mgh + \frac{1}{2} I \theta'^{2} = mgL(1 - \cos\theta) + \frac{1}{2} I\theta'^{2}$	1⁄4
	Knowing that $\theta = 0.1 \text{ rd} < 6^\circ$, $\cos \theta = 1 - \frac{\theta^2}{2}$	1/2
	$ME = \frac{1}{2} mgL\theta^2 + \frac{1}{2} mL^2 \theta^2$	72
	h	

2-2	$ME = \frac{1}{2} mgL\theta^2 + \frac{1}{2} mL^2 \theta'^2 = constant \forall t$	1⁄4
	$\frac{dME}{dt} = 0 \text{ then: } mgL\theta\theta' + mL^2 \theta'\theta'' = 0;$	
	$mL\theta'$ is not always nil	
	$g\theta + L\theta'' = 0 \implies \theta'' + (g/L) \theta = 0$	1⁄2
2-3	The differential equation has the form to $\theta'' + \omega'_0{}^2\theta = 0$	
	The oscillator undergoes simple harmonic oscillation of proper angular	
	frequency ω'_0 with $\omega'_0{}^2 = \frac{g}{L}$, thus, $\omega'_0 = \sqrt{\frac{g}{L}}$	
	The proper period is thus: $T'_0 = \frac{2\pi}{\omega'_0} = 2\pi \sqrt{\frac{L}{g}}$	1⁄2
2-4	$\theta = \theta_{m} \sin(\omega'_{0}t + \phi'); \ \theta' = \theta'_{m} \omega'_{0} \cos(\omega'_{0}t + \phi');$	1⁄4
	at $t_0 = 0$: $\theta_0 = \theta_m \sin(\varphi') > 0$ and $\theta'_0 = \theta_m \omega'_0 \cos(\varphi') = 0$ then $\varphi' = \frac{\pi}{2}$ rd	1⁄4
	$\theta_0 = \theta_m = 0,1 \text{ rd}$	
	$\theta = 0.1 \sin \left(\sqrt{\frac{g}{L}} t + \frac{\pi}{2} \right); \text{ (t in s and } \theta \text{ in rd)}$	1⁄4
3	$T_0 = 2\pi \sqrt{\frac{\Delta \ell}{g}}$ and $T'_0 = 2\pi \sqrt{\frac{L}{g}}$	
	The two pendulums are synchronous, $T_0 = T'_0 \implies \Delta \ell = L$	1⁄2

Exercise 3 (6¹/₂ points)

Sparks in a Car ignition system

Question	Answer	Mark
1-1	Since the branch of the spark plug is an open circuit due to the air gap	1⁄2
1-2	$u_{AC} = u_{AB} + u_{BC}$; $E = Ri + (ri + L di/dt)$	1⁄2
	$\frac{E}{L} = \frac{(R+r)}{L}i + \frac{di}{dt}$	1⁄2
1-3	In steady state: $i = I_0 = constant$	
	$\frac{E}{L} = \frac{(R+r)}{L} I_0 + \frac{di}{dt}, (di/dt = 0)$	1⁄2
	$E = (R+r) I_0 \implies I_0 = E/(R+r) = 12/6 = 2 A$	1⁄2
1-4	$\Delta t = 5\tau = 5\frac{L}{(R+r)} = 5 \times 0.02/6 = 0.0167 \text{ s}$	1⁄2
1-5	$E_{mag}(max) = \frac{1}{2} LI_0^2 = \frac{1}{2} \times 0.02 \times 2^2 = 0.04 J$	1⁄2
1-6	$u_{air gap} = u_{BC} = rI_0 = 2 \times 2 = 4 V$	1⁄2
1-7	No since $u_{air gap} = 4V$ is small.	1/2
2-1	The average induced e.m.f. is: $e_{av} = -L(\Delta i/\Delta t) = -0.02 \times (0-2)/10^{-6} = 40000 \text{ V}$	1⁄2
	$\Rightarrow u_{airgap} = u_{CB} \approx 40000 \text{ V}$ (since ri is assumed very small).	1⁄2
2-2	Yes, sparks are produced in the gap because the voltage is very high.	1⁄2
2-3	The sparks produced in the air gap will melt gradually the electrodes of the	
	spark plug; this causes an increase in the distance between them and	
	consequently the sparks get fainter and then the plug must be replaced by a	
	new one.	1⁄2

Question	7 points) Nuclear reactions Answer	Mark
1	(1): Natural radioactivity	1⁄4
	(2): and (3): fusion	1/2
	(4): fission	1⁄4
2-1	By applying Soddy's laws:	1⁄4
	Conservation of the mass number: $235 = 231 + A \implies A = 4$	1⁄4
	Conservation of the charge number: $92 = 90 + Z \implies Z = 2$	1⁄4
2-2	This particle is the helium-4 nucleus; its symbol is ${}_{2}^{4}$ He.	1⁄4
3-1	Adding 2 and 3 we obtain:	
	$3_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{1}^{3}H + {}_{1}^{1}H + {}_{0}^{1}n$	
	$3_{1}^{2}H \rightarrow {}_{2}^{4}He + {}_{1}^{1}H + {}_{0}^{1}n$ (5)	1⁄2
3-2	$E_{\text{Lib.}} = \Delta \text{m.c}^2 = [(3 \times 2.0141) - (4.0015 + 1.0073 + 1.0087)] \times 931.5$	
	$E_{\text{Lib}} = 0.0248 \times 931.5 = 23.1012 \text{ MeV} = 3.696 \times 10^{-12} \text{ J}$	1/2
4-1	$\Delta m = [(1.0087 + 235.0439) - (139.9216 + 93.9153 + 2(1.0087))]$	
	$\Delta m = 0.1983 u = 0.1983 \times 1.66 \times 10^{-27} = 3.292 \times 10^{-28} kg$	1/2
4-2	$E_{\text{Lib.}} = \Delta \text{ m.c}^2 = 0.1983 \times 931.5 = 184.72 \text{ MeV} = 184.72 \times 1.66 \times 10^{-13} \text{ J}$	
	$E_{\text{Lib}} = 29.56 \times 10^{-12} \text{ J}$	1/2
4-3-1	1 nucleus liberates $29.56 \times 10^{-12} \text{ J}$	
	N nuclei liberate 63×10^{12} J	
	$N = 2.131 \times 10^{24}$ nuclei	1⁄2
4-3-2	The mass lost of 3.292×10^{-28} kg corresponds to 1 nucleus	
	The mass lost of Δm_{total} corresponds to 2.131×10 ²⁴ nuclei	
	Then $\Delta m_{total} = 0.0007 \text{ kg}$	1⁄2
	The mass lost of 3.292×10^{-28} kg corresponds to 1 nucleus of mass 235.0439 u	
	The mass lost of 0.0007 kg corresponds to N nuclei of mass m_t	
	Then the mass of the used uranium is: $m_t = 4.99 \times 10^{26} \text{ u} = 0.83 \text{ kg}.$	1/2
5-1	For the deuterium nuclei:	, -
• -	$3m(^{2}_{1}H) = 6.0423 u = 10.03 \times 10^{-27} kg \text{ gives } 36.96 \times 10^{-13} J$	
	m_2 gives $4.3 \times 10^7 J$	
	Then we need $m_2 = 4.3 \times 10^7 \times 10.03 \times 10^{-27}/36.96 \times 10^{-13} = 1.1669 \times 10^{-7} \text{ kg}$	1⁄2
	$1100 \text{ we held } \text{m}_2 = 1.5 \times 10^{-3} \text{ for } 10.05 \times 10^{-7} \text{ Jobs} = 1.1009 \times 10^{-8} \text{ Kg}$	
	For the uranium nuclei:	
	$m_U = 235.0439 \text{ u} = 3.9 \times 10^{-25} \text{ kg}$ gives $29.56 \times 10^{-12} \text{ J}$	
	m_3 gives 4.3×10^7 J	
	Then we need $m_3 = 4.3 \times 10^7 \times 3.9 \times 10^{-25}/29.56 \times 10^{-12} = 5.67 \times 10^{-7} \text{ kg}$	1⁄2
5-2	To liberate the same quantity of energy, 4.3×10^7 J, we need:	
	Fuel: $m_1 = 1 \text{ kg}$	
	Deuterium nuclei: $m_2 = 1.1669 \times 10^{-7} \text{ kg}$	
	Uranium nuclei: $m_3 = 5.67 \times 10^{-7} \text{ kg}$	
	$m_2 < m_3 < m_1$	
	We prefer using deuterium nuclei.	1/2