امتحانات الثشهادة الثانوية العامة
وزارة التربية و التعليم العالّي
فرع الاجتماع والاقتّصاد
المديرية العامة للتيبية
دائرة الامتحانات

الالرقم:	مسـابقة في مـادة الرياضيات المدة: ساعتان	عدد المسائل : اربع
سابقة	او اختزان المعلومات او رس الم (دون الالتز ام بترتيب المسات	ملاحظة : يسمح باستعد يستطيع المر

I - (4points)

The development in the number of subscribers, in hundreds, of a network chain during the last 6 years is as shown in the following table:

Year	2000	2001	2002	2003	2004	2005
Rank of the year: x_{i}	1	2	3	4	5	6
Number of hundreds of subscribers: $\quad \mathrm{y}_{\mathrm{i}}$	5	8	12	15	20	24

1) Draw, in a rectangular system, the scatter plot of the points associated to the distribution $\left(x_{i} ; y_{i}\right)$.
2) Calculate the coordinates of the center of gravity G and plot this point in the preceding system.
3) Determine an equation of $D_{y / x}$, the line of regression of y in terms of x, and draw this line in the same system.
4) Suppose that the above pattern remains valid till the year 2015.
a- Estimate the number of subscribers of this chain in 2007.
b- During which year would the number of subscribers of this chain exceed 4000 for the first time?

II- (4points)

A jeweler has, in his safe, $\mathbf{3 0}$ identical boxes each containing either a necklace or a watch or a bracelet, made of either gold or platinum. These articles are distributed as shown in the following table:

	Necklace	Watch	Bracelet
Platinum	5	2	6
Gold	3	6	8

A- A box is chosen at random from this safe.

1) What is the probability of obtaining a necklace?
2) What is the probability of obtaining a gold necklace?
3) What is the probability of obtaining a necklace knowing that it is made of gold?

B- A customer wants to buy 3 gifts. Suppose that he selects simultaneously and randomly 3 boxes from this safe.

1) Prove that the probability that this customer obtains two gold articles and one platinum article is $\frac{442}{1015}$.
2) Each platinum article is sold for 2 million LL, and each gold article is sold for 1.2 million LL.
Let X be the random variable that is equal to the sum paid by the customer to buy any 3 articles chosen at random.
a- Determine the four possible values of X .
b- Determine the probability distribution corresponding to this random variable .
c- Calculate the expected value $\mathrm{E}(\mathrm{X})$. What does the number obtained represent?.

III- (4points)

Rami deposited a capital of 50000000 LL in a bank \mathbf{B}_{1} on October 1, 2005, at 8% annual interest, compounded yearly.

1) What is the amount of money that would be in his account on October 1, 2006?
2) Let $U_{0}=50000000$. Designate by U_{n} the amount in his account on the first of October of the year $(2005+n)$.
a- Find a relation between U_{n+1} and U_{n}, and deduce that the sequence $\left(U_{n}\right)$ is a geometric sequence whose common ratio is to be determined.
b- Express U_{n} in terms of n .
c- Calculate U_{8}.
3) Another bank \mathbf{B}_{2} advertises for the plan " special investment: double your capital in 8 years". a- Is the plan special investment more profitable for Rami than investing his money in bank \mathbf{B}_{1} for a period of 8 years? Justify your answer.
b- Determine the annual interest rate of the plan special investment knowing that this plan also earns compound interest that is compounded yearly.

IV- (8points)

Shown in the adjacent orthonormal system, the representative curve (C) of a function f that is defined on $] 0 ;+\infty[$.

Indication : the line (d) of equation $\mathrm{y}=1$ is tangent to the curve (C) at the point $(1 ; 1)$

A-

1) Determine $f(1)$ and f '(1) and set up
 the table of variations of f.
2) The function f is expressed by $f(x)=\frac{a+b(\ln x)}{x}$, prove that $a=b=1$.
3) Determine the abscissa of the point of intersection of (C) with the axis of abscissas, and solve the inequality $\mathrm{f}(\mathrm{x})>0$.
4) Calculate the area of the region bounded by the curve (C), the axis of abscissas and the line of equation $\mathrm{x}=1$.
5) F is a primitive (antiderivative) of f on $] 0$; $+\infty$ [; determine, according to the values of x , the sense of variations of F.

B-
In a certain company, the function f defined on $[0.1 ; 5$] expresses the profit achieved upon selling x hundreds of the items produced. This profit is expressed in millions LL.

1) a- Does this company achieve a positive profit upon selling 30 items? Justify.
b- What is the minimal number of items that the company should sell in order to achieve a positive profit?
2) a- How many items should be sold in order to achieve the maximum profit?
b- What is the amount of this maximum profit?

MATMEMARICS SE

Filist scesuon 2oo

1	Rami will have in his account in october 1, 2006: $50000000(1+0.08)=54000000 \mathrm{LL}$	1
2.a	$\mathrm{U}_{\mathrm{n}+1}=\mathrm{U}_{\mathrm{n}}(1+0.08)=1.08 \mathrm{U}_{\mathrm{n}}$ $\left(U_{n}\right)$ is a geometric sequence of common ratio 1.08.	$11 / 2$
2.b	$\mathrm{U}_{\mathrm{n}}=\mathrm{U}_{0}(1.08)^{\mathrm{n}}=50000000(1.08)^{\mathrm{n}}$	1
2.c	$\mathrm{U}_{8}=50000000(1.08)^{8} \approx 92546$ 510LL.	$1 / 2$
3.a	The special investement is more profitable for Rami, since : $92546510<50000000 \times 2$.	1
3.b	$\begin{aligned} & 2 \mathrm{C}=\mathrm{C}(1+\mathrm{i})^{8} ; 2=(1+\mathrm{i})^{8} ; 8 \ln (1+\mathrm{i})=\ln 2 ; \ln (1+\mathrm{i})=(\ln 2) / 8 ; 1+\mathrm{i}=\mathrm{e}^{(\ln 2) / 8} \\ & \mathrm{i}=\mathrm{e}^{(\ln 2) / 8}-1=0.09 ; \text { then the annual interst rate is } 9 \% . \end{aligned}$	2
诵IV		
A1	$f(1)=1$ and $f^{\prime}(1)=0$	2
A. 2	$\begin{aligned} & f(1)=1 \text { gives } a=1 \\ & f^{\prime}(x)=\frac{b-a-b \ln x}{x^{2}} ; f^{\prime}(1)=0 ; b-a=0 \text { so } b=a ; b=1 . \end{aligned}$	$11 / 2$
A. 3	(C) cuts the axis of abscissas at a point of absciss x so that $f(x)=0$ we get $1+\ln x=0 ; x=1 / e$. $f(x)>0$ for $x>1 / e$.	2
A. 4	$\begin{aligned} & A=\int_{\frac{1}{e}}^{1} \frac{1+\ln x}{x} d x\left(u^{2}\right) . \text { Let } u(x)=1+\ln x ; u^{\prime}(x)=1 / x \text { we get } \\ & \int_{\frac{1}{e}}^{1} \frac{1+\ln x}{x} d x=\int_{\frac{1}{e}}^{1} u(x) \cdot u^{\prime}(x) d x=\frac{1}{2}\left[u^{2}(x)\right]_{1 / e}^{1}=\frac{1}{2}\left[(1+\ln x)^{2}\right]_{1 / e}^{1}=\frac{1}{2}(1-0)=\frac{1}{2} \\ & A=\frac{1}{2} u^{2} \end{aligned}$	2
A. 5	$F^{\prime}(\mathrm{x})=\mathrm{f}(\mathrm{x}) \quad$x 0 $1 / \mathrm{e} \quad+\infty$ $\mathrm{F}(\mathrm{x})$ \longrightarrow $0 \quad+$ $\mathrm{F}(\mathrm{x})$ \longrightarrow \longrightarrow	$11 / 2$
B.1.a	for selling 30 items, $x=0.3$; using the graph $0.3<1 / e$ and $f(x)<0$, then the profit is not positive. OR : $\mathrm{f}(0.3)=-0.679$.	$11 / 2$
B.1.b	The breaking event (zero profit) is $1 / \mathrm{e}=0.367$ and $\mathrm{f}(\mathrm{x})>0$ for $\mathrm{x}>1 / \mathrm{e}$, so 37 items is the minimal number of items that the company should sell in order to achieve a positive profit..	$11 / 2$
B.2.a	f has a maximum for $\mathrm{x}=1$. We have to sell 100 items in order to achieve the maximum profit.	1
B.2.b	The maximum profit is 1000000 LL since $f(1)=1$.	1

