دورة سنة ٢٠٠٦ ألعادية

امتحانات الشهادة الثانوية العامة فرع الاجتماع والاقتصاد

| الاسم:<br>الرقم: | مسابقة في مادة الرياضيات<br>المدة: ساعتان | عدد المسائل : اربع                       |
|------------------|-------------------------------------------|------------------------------------------|
|                  |                                           | 19 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m |

ملاحظة : يسمح باستعمال ألة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات يستطيع المرشح الاجابة بالترتيب الذي يناسبه ( دون الالتزام بترتيب المسائل الوارد في المسابقة )

## I – (4points)

The development in the number of subscribers, in hundreds, of a network chain during the last 6 years is as shown in the following table:

| Year                                                        | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|-------------------------------------------------------------|------|------|------|------|------|------|
| Rank of the year: x <sub>i</sub>                            | 1    | 2    | 3    | 4    | 5    | 6    |
| Number of <b>hundreds</b><br>of subscribers: y <sub>i</sub> | 5    | 8    | 12   | 15   | 20   | 24   |

1) Draw, in a rectangular system, the scatter plot of the points associated to the distribution  $(x_i, y_i)$ .

2) Calculate the coordinates of the center of gravity G and plot this point in the preceding system.

- 3) Determine an equation of  $D_{y/x}$ , the line of regression of y in terms of x, and draw this line in the same system.
- 4) Suppose that the above pattern remains valid till the year 2015.

a- Estimate the number of subscribers of this chain in 2007.

b- During which year would the number of subscribers of this chain exceed 4000 for the first time?

### II- (**4points**)

A jeweler has, in his safe, **30** identical boxes each containing either a **necklace** or a **watch** or a bracelet, made of either gold or platinum. These articles are distributed as shown in the following table:

|          | Necklace | Watch | Bracelet |
|----------|----------|-------|----------|
| Platinum | 5        | 2     | 6        |
| Gold     | 3        | 6     | 8        |

- A- A box is chosen at random from this safe.
  - 1) What is the probability of obtaining a necklace?
  - 2) What is the probability of obtaining a gold necklace?
  - 3) What is the probability of obtaining a necklace knowing that it is made of gold?
- **B-** A customer wants to buy 3 gifts. Suppose that he selects simultaneously and randomly 3 boxes from this safe.
  - 1) Prove that the probability that this customer obtains two gold articles and one platinum article is  $\frac{442}{1015}$

2) Each platinum article is sold for 2 million LL, and each gold article is sold for 1.2 million LL.

Let X be the random variable that is equal to the sum paid by the customer to buy any 3 articles chosen at random.

- a- Determine the four possible values of X.
- b- Determine the probability distribution corresponding to this random variable.
- c- Calculate the expected value E(X). What does the number obtained represent?.

#### **III- (4points)**

Rami deposited a capital of 50 000 000 LL in a bank  $B_1$  on October 1, 2005, at 8 % annual interest, compounded yearly.

- 1) What is the amount of money that would be in his account on October 1, 2006?
- 2) Let  $U_0 = 50\ 000\ 000$ . Designate by  $U_n$  the amount in his account on the first of October of the year (2005 + n).
  - a- Find a relation between  $U_{n+1}$  and  $U_n$ , and deduce that the sequence  $(U_n)$  is a geometric sequence whose common ratio is to be determined.
  - b-Express U<sub>n</sub> in terms of n.
  - c- Calculate U<sub>8</sub>.
- 3) Another bank B<sub>2</sub> advertises for the plan " special investment: double your capital in 8 years".
   a- Is the plan special investment more profitable for Rami than investing his money in bank B<sub>1</sub> for a period of 8 years? Justify your answer.
  - b- Determine the annual interest rate of the plan **special investment** knowing that this plan also earns compound interest that is compounded yearly.

#### IV- (8points)

Shown in the adjacent orthonormal system, the representative curve (C) of a function f that is defined on ]  $0; +\infty$  [.

**Indication :** the line (d) of equation y = 1 is tangent to the curve (C) at the point (1;1)



# A-

1) Determine f(1) and f '(1) and set up the table of variations of f.

2) The function f is expressed by  $f(x) = \frac{a + b(\ln x)}{x}$ , prove that a = b = 1.

- 3) Determine the abscissa of the point of intersection of (C) with the axis of abscissas, and solve the inequality f(x) > 0.
- 4) Calculate the area of the region bounded by the curve (C), the axis of abscissas and the line of equation x = 1.
- 5) F is a primitive (antiderivative) of f on ] 0;  $+\infty$  [; determine, according to the values of x, the sense of variations of F.

#### B-

In a certain company, the function f defined on [0.1; 5] expresses the profit achieved upon selling x hundreds of the items produced. This profit is expressed in millions LL.

- 1) a- Does this company achieve a positive profit upon selling 30 items? Justify.
  - b- What is the minimal number of items that the company should sell in order to achieve a positive profit?
- 2) a- How many items should be sold in order to achieve the maximum profit?
  - b- What is the amount of this maximum profit?

| MAT   | ATHEMATICS SE                                                                                                                                         |   | FIRST SESSION 200          |                                                                                                                                                                       |       |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| Q     | ANSWERS                                                                                                                                               |   |                            |                                                                                                                                                                       |       |  |  |
| 1 T   |                                                                                                                                                       |   |                            |                                                                                                                                                                       |       |  |  |
|       |                                                                                                                                                       | N | 2                          | x = 3.5, $y = 14G(3.5; 14)$                                                                                                                                           | 1 1⁄2 |  |  |
| 1     |                                                                                                                                                       |   | 3                          | y = 3.828x + 0.6                                                                                                                                                      | 1 1⁄2 |  |  |
|       |                                                                                                                                                       | 1 | 4.a                        | In the year 2007, $x = 8$<br>y = 3.828×8 + 0.6 = 31.224<br>Let 3122 member chips.                                                                                     | 1 1⁄2 |  |  |
|       |                                                                                                                                                       |   | 4.b                        | 3.828x + 0.6 > 40<br>3.828x > 39.4<br>x > 10.29<br>Let $x = 11$<br>in the year 2010 the<br>number of member chips<br>will be greater than 4000<br>for the first time. |       |  |  |
| ₽II   |                                                                                                                                                       |   |                            |                                                                                                                                                                       | 1     |  |  |
| A.1   | P(N) = 8/30 = 4/15                                                                                                                                    |   |                            |                                                                                                                                                                       | 1⁄2   |  |  |
| A.2   | $P(N \cap G) = 3/30 = 1/10$                                                                                                                           |   |                            |                                                                                                                                                                       |       |  |  |
| A3    | P(N/G) = 3/17.                                                                                                                                        |   |                            |                                                                                                                                                                       |       |  |  |
| B1    | P(2G and 1P) = $\frac{C_{17}^2 \times C_{13}^1}{C_{30}^3} = \frac{136 \times 13}{4060} = \frac{442}{1015}$                                            |   |                            |                                                                                                                                                                       |       |  |  |
| B.2.a | The 4 possible values of X are :3.6 for 3 articles in gold5,2 for an article in gold and 2 in platinum6 for 3 articles in platinum                    |   |                            |                                                                                                                                                                       |       |  |  |
|       | x <sub>i</sub> 3,6 4,4                                                                                                                                |   |                            | 5,2 6                                                                                                                                                                 |       |  |  |
| B.2.b | $P_i \qquad \frac{C_{17}^3}{C_{30}^3} = \frac{680}{4060} \qquad \frac{1768}{4060}$                                                                    | ( | $C_{17}^1 \times C_{30}^3$ | $\frac{C_{13}^2}{4060} = \frac{1326}{4060} \qquad \frac{C_{13}^3}{C_{30}^3} = \frac{286}{4060}$                                                                       | 2     |  |  |
| B.2.c | $E(X) = \frac{1}{4060} [3.6 \times 680 + 4.4 \times 1768 + 5.2 \times 1326 + 286 \times 6] = 4.64$<br>the average price of 3 articles is 4 640 000 LL |   |                            |                                                                                                                                                                       | 1 1⁄2 |  |  |

| ₽III  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1     | Rami will have in his account in october 1, 2006:<br>50 000 000( $1 + 0.08$ ) = 54 000 000 LL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |
|       | $U_{n+1} = U_n (1+0.08) = 1.08U_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 2.a   | $(U_n)$ is a geometric sequence of common ratio 1.08.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1/2 |
| 2.b   | $U_n = U_0 (1.08)^n = 50\ 000\ 000(1.08)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |
| 2.c   | $U_8 = 50\ 000\ 000\ (1.08)^8 \approx 92\ 546\ 510$ LL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1⁄2   |
| 3.a   | The special investmeent is more profitable for Rami , since :<br>92 546 $510 < 50\ 000\ 000 \times 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |
| 3.b   | $2C = C(1 + i)^8$ ; $2 = (1 + i)^8$ ; $8 \ln(1 + i) = \ln 2$ ; $\ln(1 + i) = (\ln 2)/8$ ; $1 + i = e^{(\ln 2)/8}$<br>$i = e^{(\ln 2)/8} - 1 = 0.09$ ; then the annual interst rate is 9 %.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2     |
| ∕≊IV  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| A1    | f(1) = 1 and f'(1) = 0<br>x = 0<br>f(x) $f(x) = 0$<br>$-\infty$<br>x = 0<br>f(x) = 0<br>$-\infty$<br>x = 0<br>f(x) = 0<br>$-\infty$<br>x = 0<br>f(x) | 2     |
| A.2   | f(1) = 1 gives a = 1<br>f'(x) = $\frac{b-a-b\ln x}{x^2}$ ; f'(1) = 0; b-a = 0 so b = a; b = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1⁄2 |
| A.3   | (C) cuts the axis of abscissas at a point of absciss x so that $f(x) = 0$<br>we get $1 + \ln x = 0$ ; $x = 1/e$ .<br>f(x) > 0 for $x > 1/e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2     |
| A.4   | $A = \int_{\frac{1}{e}}^{1} \frac{1+\ln x}{x} dx  (u^{2})  \text{Let } u(x) = 1 + \ln x \; ; \; u'(x) = 1/x \; \text{ we get}$ $\int_{\frac{1}{e}}^{1} \frac{1+\ln x}{x} dx = \int_{\frac{1}{e}}^{1} u(x) \cdot u'(x) dx = \frac{1}{2} \left[ u^{2}(x) \right]_{1/e}^{1} = \frac{1}{2} \left[ (1+\ln x)^{2} \right]_{1/e}^{1} = \frac{1}{2} (1-0) = \frac{1}{2}$ $A = \frac{1}{2} u^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2     |
| A.5   | F'(x) = f(x)<br>$\frac{x  0  1/e  +\infty}{F'(x)  -  0  +}$<br>F(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1/2 |
| B.1.a | for selling 30 items, $x = 0.3$ ; using the graph $0.3 < 1/e$ and $f(x) < 0$ , then the profit is not positive .<br><b>OR</b> : $f(0.3) = -0.679$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1/2 |
| B.1.b | The breaking event (zero profit) is $1/e = 0.367$ and $f(x) > 0$ for $x > 1/e$ , so 37 items is the minimal number of items that the company should sell in order to achieve a positive profit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1⁄2 |
| B.2.a | f has a maximum for $x = 1$ . We have to sell 100 items in order to achieve the maximum profit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1     |
| B.2.b | The maximum profit is 1 000 000 LL since $f(1) = 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |