| المادة: الرياضيات        |
|--------------------------|
| الشهادة: الثانوية العامة |
| الفرع: العلوم العامة     |
| نموذج رقم ٤٠ ـ           |
| المدة : أربع ساعات       |



نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٦-٢٠١٧ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

# I- (2pts)

Consider the two sequences ( $U_n$ )  $n \in IN$  and ( $V_n$ ), defined as :

 $U_{0=2}$ ,  $U_{n+1} = \sqrt{U_n}$  and  $V_n = \ln(U_n)$  for all  $n \in N$ .

1) a-Use mathematical induction to show that  $U_n > 1$  for all  $n \in N$ .

**b**- deduce that for all n in N ,  $V_n$  is defined and  $V_n > 0$ .

2) a- Prove that (V<sub>n</sub>) is a geometric sequence whose common ratio and first term should be determined
 b- Express V<sub>n</sub> in terms of n, then deduce an expression of U<sub>n</sub> in terms of n.

**c**- Prove that the sequence  $(U_n)$  is decreasing . Deduce that  $(U_n)$  is convergent , then find its limit .

3) Let  $S = V_0 + V_1 + \dots + Vn$ . and  $P = U_0 \times U_1 \times \dots \times Un$ .

Calculate S in terms of n , then deduce P in terms of n .

# II- (3pts).

In the image and sound section in a grand store ,sets of a certain brand of TV and DVD are on sale .

. The probability that a client buys the TV is  $\frac{3}{5}$ .

. The probability that a client buys the DVD given that he bought the TV is  $\frac{7}{10}$ .

. The probability that a client buys the DVD is  $\frac{23}{50}$ .

Denote by T the event : the client buys the TV and by L the event :the client buys the DVD . 1) Determine the probabilities of the following events.

## (The results should be expressed as fractions)

- a) The client buys both items.
- **b**) The client buys the DVD only .
- c) The client buys at least one of the items.
- d) The client does not buy any items.
- 2) Knowing the client does not buy the DVD, show that the probability to buy the TV is  $\frac{9}{21}$ .
- 3) Before the sale period, the TV costs 500 000 LL and the DVD costs 200 000 LL. During the sale week, the store discounted 15 % on the cost if a client buys only one item and 25 % if a client buys both items.

Denote by S the effective sum paid by a certain client .

- a) Determine the four possible value for S.
- **b**) Determine the probability distribution for S .
- c) Calculate the expected value for S .
- 4) Knowing that the client didn't buy a DVD , calculate the probability that the he didn't pay 425000LL . Explain .

## III- (2 pts)

O, A, F and F' are fixed . OF'= 1, OF = 5 and OA = 6. Let (C) be a variable circle tangent to (OA), (FD) and (F'S). *(See the figure below)* 

#### Part A.

1) a- Calculate FD and F'S.

**b-** Prove that MF + MF' = 6.

c- Deduce that M moves on a ellipse (E) with foci and major axis to be determined .

a- Determine the center I of (E). Show that O and A are two vertices of (E).
 b- Construct B and B', the vertices of (E) on the non-focal axis .Calculate e.

c- H is a point on [FA) so that  $AH = \frac{3}{2}$  and ( $\Delta$ ) is the perpendicular at H to (OA). Prove that ( $\Delta$ ) is a directrix to (E)

2) L is the point so that IFLB is a rectangle. Prove that  $I\hat{L}$  H is a right angle.

### <u>Part B</u>

The plane is referred to the system  $(I; \vec{i}, \vec{j})$  with  $\vec{i} = \frac{1}{2}\vec{IF}$ .

**1) a**-Write an equation of (E).

**b**-Find an equation of  $(\Delta')$ , the  $2^{nd}$  directrix to (E).

2) The perpendicular at F' to (OA) meets (E) at G and G'. (Δ') intersects the x-axis at K.
a-Prove that (KG) and (KG') are tangent to (E).

**b**-Prove that  $\frac{GF}{GF'} = \frac{KF}{KF'}$ .

c-Calculate the area bounded be (E) , (KG) , (KG') and (IB).



## IV-(3 pts)

In the space referred to an orthonormal system ( O;  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  ), consider the points

A(1,-2,1) and B(2,-1,3). (P) is a plane containing (AB) and parallel to v(0,1,1).

- 1) Prove that x + y z + 2 = 0 is an equation of (P).
- 2) Consider the point E(2,2,0), and denote by (d) the line through E and perpendicular to (P).
  a- Write a system of parametric equations of (d).
  - **b-** Find the coordinates of H orthogonal projection of E on (P).

#### In what follows , suppose that H(0,0,2).

- **3) a-** Prove that HA = HB.
  - b- Write a system of parametric equations of the bissector of AHB.
- **a** Calculate the angle that (AE) makes with (P). **b** Write an equation of the plane (Q) containing (AE) and perpendicular to (P).
- 5) Consider in the plane (P) the circle (C) with center H and radius HA.

**a**-Prove that  $F(\sqrt{3}, -\sqrt{3}, 2)$  is a point on (C). Then show that (HF) perpendicular to (AB).

**b-** Write a system of parametric equations of the tangent at F to (C).

6) N is a variable point on (d). Find the coordinates of N so that the volume of the tetrahedron NABF is twice that EABF.

#### V- (3 points)

In the next figure, ABEC is a right trapezoid so that AB = 1, AC = 2, and CE = 4. S is the similitude that maps A onto C and C onto E. (BC) intersects (AE) at I.



1) Calculate the scalar product  $(\overrightarrow{BA} + \overrightarrow{AC}).(\overrightarrow{AC} + \overrightarrow{CE})$ , deduce that (AE) is perpendicular to (BC)

2) Show that 2 is the scale factor of S and  $-\frac{\pi}{2}$  is an angle of it.

- **3**) **a** Determine S(AE) and S(BC).
  - **b** Deduce that I is the center of S.
  - c- Determine S(B).
- 4) G is the midpoint of [AB] and H is that of [EC].

**a**- Prove that H = SoS(G).

**b-** Express  $\overrightarrow{IH}$  in terms of  $\overrightarrow{IG}$ .

5) F is the orthogonal projection of B on (EC). h is the dilation with center F and scale factor  $-\frac{1}{2}$ 

**a**-Determine an angle of hoS and so its scale factor . **b**-Prove that C is the center of hoS.

6) a- The plane is referred to the direct orthonormal system  $(A; \vec{u}, \vec{v})$  with  $\vec{u} = \overrightarrow{AB}$  and  $\vec{v} = \frac{1}{2}\overrightarrow{AC}$ .

**b-** Find the complex form for S . Deduce  $z_1$ .

7) M is a variable point that moves o the curve (C) with equation :  $y = \frac{2}{1 + e^x}$ , and M'= S(M).

M' moves on the curve (C') = S((C)).

**a-** Prove that the midpoint H of [CE] is on (C').

**b-** Write an equation of the tangent (T) to (C') at H .

**c**- Show that  $y = 2[1 - \ln(\frac{4-x}{x})]$  is an equation of (C').

## VI- (7pts)

#### <u>Part A.</u>

*f* is a function defined over  $]0;+\infty[$ , as  $f(x) = x^2 - 2 + \ln x;$ (C) is the graph of f in an orthonormal system (0; i, j).

- 1) Find  $\lim f(x)$  as  $x \to 0$  and as  $x \to +\infty$  and  $\lim \frac{f(x)}{x}$  as  $x \to +\infty$ .
- a- Set up the table of variations of f.
  b- Prove that the equation f(x) = 0 has a unique solution α so that 1.31<α<1.32.</li>
  c- Determine, according to x, the sign of f(x).
- **3)** Discuss , according to x , the concavity of (C).
- **a** Calculate *f*(1), *f*(2), then plot (C). **b** Solve graphically *f*(*x*) > *x*.

#### <u>Part B.</u>

g is the function defined over  $]0,+\infty[$  as  $g(x) = x^2 + (2 - \ln x)^2$ ; (C') is the graph of g in a new system of axes.

1) Find  $\lim g(x)$  as  $x \to 0$  and as  $x \to +\infty$  and  $\lim \frac{g(x)}{x}$  as  $x \to +\infty$ .

2) Show that  $g'(x) = \frac{2f(x)}{x}$ , then set up the table of variations of g.

Verify that  $g(\alpha) = \alpha^2(1 + \alpha^2)$ .

**3)** Calculate g(1), g(e) then plot (C').

- 4) a- Verify that  $x(\ln x-1)$  is an antiderivative of  $\ln x$ . b- Let  $z = x(2-\ln x)^2$ , calculate z', then find  $\int g(x)dx$ .
- 5) a-For  $x \le \alpha$ , prove that g has an inverse function h.

Find  $D_h$ ,  $R_h$ , then plot  $(C_h)$  the graph of h in the same system as (C').

- **b** Calculate the area of the region bounded by  $(C_h)$ , in terms of  $\alpha$ , the two lines  $y = \alpha$  and x = 5.
- **c** Find the point of  $(C_h)$  where the tangent is parallel to the line with equation  $y = -\frac{1}{2}x$ .



المادة: الرياضيات

نموذج رقم ٤ -المدة : أربع ساعات

الشهادة: الثانوية العامة الفرع: العلوم العامة

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٦-٢٠١٧ وحتى صدور المناهج المطوّرة)

# Scale of Marks /80

| Question /<br>Mark |     | Solution                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |     | Question I                                                                                                                                                                                                                                                                                                                                                                      |
|                    |     | $U_0 = 2 \ge 1$ , suppose that $U_K > 1$ .                                                                                                                                                                                                                                                                                                                                      |
| <b>1.</b> a        | 1   | $\sqrt{U_{K}} > 1$ , hence $U_{K+1} > 1$ .                                                                                                                                                                                                                                                                                                                                      |
| 1.b                | 1   | Since $U_n > 1$ , then $\ln(U_n) > 0$ and $V_n$ is defined.                                                                                                                                                                                                                                                                                                                     |
| 2.a                | 1   | $V_{n+1} = \ln(U_{n+1}) = \ln(\sqrt{U_n}) = \frac{1}{2}\ln(U_n) = \frac{1}{2}V_n$<br>(V <sub>n</sub> ) is a geometric sequence so that V <sub>0</sub> = ln 2 and r = $\frac{1}{2}$                                                                                                                                                                                              |
|                    |     | $V_n = V_0 \times r^n = \ln 2 \times (\frac{1}{r})^n$                                                                                                                                                                                                                                                                                                                           |
| 2.b                | 1   | <sup>n</sup> <sup>0</sup> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                          |
|                    |     | $\ln(U_n) = V_n$ ; $U_n = e^{V_n} = e^{\ln 2 \times (\frac{1}{2})^n}$                                                                                                                                                                                                                                                                                                           |
| 2.c                | 2   | $\frac{U_{n+1}}{U_n} = e^{\ln 2 \times (\frac{1}{2})^{n+1} - \ln 2 \times (\frac{1}{2})^n} = e^{(\frac{1}{2})^n (\frac{1}{2} \ln 2 - \ln 2)} = e^{(\frac{1}{2})^n \ln 2 (\frac{1}{2} - 1)} = e^{-(\frac{1}{2})^{n+1} \ln 2} < 1.$<br>$U_n$ is decreasing and having 1 as lower bound : $(U_n)$ convergent.<br>If $n \to +\infty$ , then $(\frac{1}{2})^n \to 0$ and $U_n \to 1$ |
| 3.                 | 2   | $S = V_0 + V_1 + V_2 + \dots + V_n = \frac{V_0(r^{n+1} - 1)}{r - 1} = \frac{\ln 2[(\frac{1}{2})^{n+1} - 1]}{\frac{1}{2} - 1} = -2\ln 2[(\frac{1}{2})^{n+1} - 1]$<br>$S = \ln U_0 + \ln U_1 + \ln U_2 + \dots + \ln U_n$<br>$= \ln(U_0 \times U_1 \times \dots \times U_n) = \ln p  \text{Then } P = e^S$                                                                        |
| Question II        |     |                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>1.</b> a        | 1.5 | $P(T \cap L) = P(T) \times P(L/T) = \frac{3}{5} \times \frac{7}{10} = \frac{21}{50}.$                                                                                                                                                                                                                                                                                           |

|            |      | $P(L) = P(L \cap T) + P(L \cap \overline{T}) = \frac{21}{50} + P(L \cap \overline{T})$                                                                                                                                                                                           |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.b        | 1.5  | Then $P(L \cap \overline{T}) = \frac{23}{50} - \frac{21}{50} = \frac{1}{25}$                                                                                                                                                                                                     |
| 1.c        | 1.5  | $P(T \cup L) = P(T) + P(L) - P(T \cap L) = \frac{3}{5} + \frac{23}{50} - \frac{21}{50} = \frac{16}{25}.$                                                                                                                                                                         |
|            |      |                                                                                                                                                                                                                                                                                  |
| 1.d        | 1    | $P(T \cap L) = 1 - P(T \cup L) = \frac{1}{25}.$                                                                                                                                                                                                                                  |
| 2          | 1    | $P\left(\frac{T}{L}\right) = \frac{P\left(T \cap \overline{L}\right)}{P(\overline{L})} = \frac{P(T) \times P\left(\frac{\overline{L}}{T}\right)}{P(\overline{L})} = \frac{\left(\frac{3}{5}\right) \times \left(\frac{3}{10}\right)}{\left(\frac{21}{50}\right)} = \frac{9}{21}$ |
| 3.a        | 1    | 425000 for TV only, 170000 dor DVD only, 525000 for both, 0 for nothing.                                                                                                                                                                                                         |
|            |      | D <sub>i</sub> 0 170000 425000 5250000                                                                                                                                                                                                                                           |
| 3.b        | 2    | $P_i$ $\frac{18}{50}$ $\frac{2}{50}$ $\frac{9}{50}$ $\frac{21}{50}$                                                                                                                                                                                                              |
|            |      | $P(425) = P(T \cap \overline{L}) = \frac{3}{5} \times \frac{3}{10}; P(170) = P(L \cap \overline{T}) = \frac{2}{5} \times \frac{1}{10}$                                                                                                                                           |
| 3.c        | 1    | $E(D) = \sum D_i P_i = \frac{15190}{50} \approx 304000 LL .$                                                                                                                                                                                                                     |
| 4          | 1.5  | $\overline{L} = (\overline{L} \cap T) or(\overline{L} \cap \overline{T}) \text{ ; Since he didn't pay 425000 , then he didn't buy any item.}$ $P\overline{T}/L = \frac{P(\overline{T} \cap \overline{L})}{P(\overline{L})} = \frac{\frac{18}{50}}{\frac{27}{50}} = \frac{2}{3}$  |
|            |      | Question III                                                                                                                                                                                                                                                                     |
|            |      | Part A $ED = OA = 1 and E'S = E'A = 5$                                                                                                                                                                                                                                           |
| <b>1.a</b> | 0.75 | $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$                                                                                                                                                                                                                          |
| 1.b        | 0.75 | b-MF + MF' = MD + DF + MF' = 1 + MS + MF'<br>= 1+F'S = 1+5 =6 = OA.                                                                                                                                                                                                              |
| 1.c        | 0.75 | c-MF + MF' = 6; M moves on the ellipse with foci F and F' and $2a = 6The focal axis is (FF')$                                                                                                                                                                                    |
| 2.a        | 0.75 | <ul> <li>a- The center I is the midpoint of [FF'].</li> <li>IO =IA = 3 = a ; Since O and A are on the focal axis , then they are two vertices of (E).</li> </ul>                                                                                                                 |
| 2.b        | 1    | b-B and B' are on the perpendicular bisector of [FF'] so that<br>IB = IB'= $\sqrt{9-4} = \sqrt{5}$ .<br>$e = \frac{c}{a} = \frac{IF}{IA} = \frac{2}{3}$ .                                                                                                                        |
| 2.c        | 1    | AH = $\frac{3}{2}$ , then IH = $3 + \frac{3}{2} = \frac{9}{2} = \frac{a^2}{c}$ . ( $\Delta$ ) is a directrix to (E).                                                                                                                                                             |

|             |     | IL <sup>2</sup> = 9; IH <sup>2</sup> = $\frac{81}{4}$ and LH <sup>2</sup> = 5 + $\frac{25}{4} = \frac{45}{4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3           |     | $H^{2} = IL^{2} + LH^{2}$ then the triangle ILH is right at L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |     | Part R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |     | $r^2 = u^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>1.</b> a | 0.5 | $\frac{x}{9} + \frac{y}{5} = 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.b         | 0.5 | $(\Delta'): \mathbf{x} = -\frac{9}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |     | $G(-2, \frac{5}{2})$ and $G'(2, \frac{5}{2})$ ; $K(-\frac{9}{2}, 0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>2.</b> a | 0.5 | Derive wrt x : $\frac{2x}{9} + \frac{2yy'}{5} = 0$ ; y' <sub>G</sub> = $\frac{2}{3} = slope(KG)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |     | (KG) is tangent to (E) and by symmetry, (KG') is also tangent to (E).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.b         | 0.5 | $\frac{GF}{GF'} = \frac{KF}{KF'}$ (verification ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |     | (KG) intersects (IB) at J(0,3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |     | Half (area) = area (triangle KII) - $\frac{1}{4}$ area (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •           | 1   | $\frac{1}{4} = 0 \qquad \frac{1}{2} \qquad - \qquad 27 \qquad \frac{3\pi}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>2.</b> ¢ | 1   | $= \frac{1}{2} \times \frac{1}{2} \times 3 - \frac{1}{4} (\pi \times 3 \times \sqrt{5}) = \frac{27 - 5\pi \sqrt{5}}{4}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |     | Tetal area = $\frac{27-3\pi\sqrt{5}}{u^2}u^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |     | 10tar area - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1           | 1   | $\frac{1}{4M} (\frac{1}{4R} + \frac{1}{4N}) = 0 + \frac{1}{4R} + \frac{1}{4R} = 0 $ (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1<br>2.a    | 1   | $AiM (AD \land V) = 0, x + y - 2 + 2 = 0$ (r)<br>a)(d) $\cdot x = k + 2 \cdot y = k + 2 \cdot z = -k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.b         | 1   | (a) (a) (a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 .a        | 0.5 | $\frac{1}{1000} = \frac{1}{1000} = 1$ |
|             |     | 3 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>3.</b> b | 1   | The bisector is (HG) with 2G $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ midpoint of [AB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|             |     | x=m, y=-m, z=2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>4.</b> a | 1   | The angle is HAE, ; $\cos HAE = \frac{AH}{AE}$ or $\sin or \tan \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |     | $\overrightarrow{AM}(\overrightarrow{AE} \land \overrightarrow{n_{r}}) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>4.</b> b | 1.5 | $M(x,y,x) = (2^{-1}) \text{ Inen } 1 + 1(1 + 1) + 1 = 0$<br>Therefore $x + z - 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |     | $F(\sqrt{3}, -\sqrt{3}, 2) \in (P)$ and $HF = HA = \sqrt{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>5.</b> a | 2   | $\overrightarrow{HF}.\overrightarrow{AB} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |     | b)the tangent at F is the line through F and parallel to (AB). $x = t$ , $y = t$ , $z = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.b         | 1.5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 6           | 1.5 | the base is ABF, then $d(N,P) = d(E,P)$<br>$\frac{ k+2+k+2+k+2 }{\sqrt{3}} thenEH = 2\sqrt{3}.$ $ 3x+6  = 6_{\text{hence } k} = 0 \text{ or } k = -4$                                                                                                                                             |
|-------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |     | Question V                                                                                                                                                                                                                                                                                        |
| 1           | 1   | 1) $(\overrightarrow{BA} + \overrightarrow{AC}) \cdot (\overrightarrow{AC} + \overrightarrow{CE}) = 0$ then (BC) is perpendicular to (AE).                                                                                                                                                        |
| 2           | 1   | 2) $k = \frac{CE}{AC} = \frac{4}{2} = 2$ and $\alpha = (\overrightarrow{AC}, \overrightarrow{CE}) = \frac{-\pi}{2} + 2k\pi$                                                                                                                                                                       |
| <b>3.</b> a | 1   | 3) a- $S(AE) = line through C and perpendicular to (AE) . Then S(AE)=(BC).Similary S(BC) = (AE).$                                                                                                                                                                                                 |
| <b>3.</b> b | 1   | b- $S(I) = S(AE) \cap S(BC) = (BC) \cap (AE) = I$ .<br>I is the center of S.                                                                                                                                                                                                                      |
| 3.c         | 1   | c-Since CA=2AB and $(\overrightarrow{AB}, \overrightarrow{CA}) = \frac{\pi}{2} and S(A) = C$ then S(B)=A.                                                                                                                                                                                         |
| <b>4.</b> a | 0.5 | 4) a- $S(G) = G'$ midpoint of [CA] and $S(G')=H$ midpoint of [AC].                                                                                                                                                                                                                                |
| <b>4.</b> b | 0.5 | b- SoS= dilation (I;-4)then $\overrightarrow{IH} = -4\overrightarrow{IG}$                                                                                                                                                                                                                         |
| <b>5.</b> a | 0.5 | 5)a-h(F; $\frac{-1}{3}$ ) $oS(I,2,\frac{-\pi}{2}) = S'(?,\frac{2}{3},\frac{\pi}{2})$ .                                                                                                                                                                                                            |
| 5.b         | 0.5 | b- $\overrightarrow{FC} = \frac{-1}{3}\overrightarrow{FE}$ then C = h(E) but S(C)=E then hoS(C)=C and C is the center of hoS                                                                                                                                                                      |
| 6           | 1   | $z' = -2iz+b$ , $z_c = -2iz_A+b$ . $b = 2i$ .<br>$z' = -2iz+2i$ , $z_I(1+2i) = 2i$ then $z_I = \frac{4}{5} + \frac{2i}{5}$                                                                                                                                                                        |
| 7.a         | 1   | G' (0,1) is on (C) and $H = S(G')$ is on (C').                                                                                                                                                                                                                                                    |
| 7.b         | 1.5 | $f'(x) = \frac{-2e^x}{(1+e^x)^2}$ and $f'(0) = -\frac{1}{2} =$ slope of the tangent<br>therefore the slope of the tangent at H to (C') is 2<br>equation of (T) is : $y = 2x - 2$                                                                                                                  |
| 7.c         | 1.5 | $x'+iy' = -2i(x+iy)+2i  x'=2y \text{ and } y'=2-2x \text{ replace in(C)}:$ $\frac{x'}{2} = \frac{2}{1+e^{\frac{2-y'}{2}}} e^{\left(\frac{2-y'}{2}\right)} = \frac{4}{x'}-1$ $\frac{2-y'}{2} = \ln\left(\frac{4-x}{x}\right) eq \text{ of (C')}: y=2\left[1-\ln\left(\frac{4-x}{x}\right)\right].$ |

|     | Question VI |                                                                                                                                                                                                                                                                        |  |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | r           | Part A                                                                                                                                                                                                                                                                 |  |
| 1   |             | $\lim_{x \to 0} f(x) = -\infty $ (y'y) is an asymptote to (C).                                                                                                                                                                                                         |  |
|     | 3           | $\lim_{x \to +\infty} f(x) = +\infty \text{ and } \lim_{x \to +\infty} f(x) = +\infty . (C) \text{ has a parabolic branch parallel to}$                                                                                                                                |  |
| 2.a | 1           | $\begin{array}{c c} (y \ y). \\ f'(x) = 2x + \frac{1}{x} > 0 \\ \hline x & 0 & +^{\infty} \\ f'(x) & + \\ f(x) & & \\ \end{array}$                                                                                                                                     |  |
| 2.b | 1           | f is continuous and strictly increasing from $^{-\infty}$ to $+^{\infty}$<br>then f(x) = 0 has only one root $\alpha$ .<br>f(1.31) < 0, f( $\alpha$ ) = 0 and f(1.32) > 0<br>f(1.31) < f( $\alpha$ ) < f(1.32), but f is increasing<br>therefore 1.31< $\alpha$ < 1.32 |  |
| 2.c | 1           | $f(x) < 0$ for $x < \alpha$ and $f(x) > 0$ for $x > \alpha$ .                                                                                                                                                                                                          |  |
| 3   | 1           | f '' (x)= 2 - $\frac{1}{x^2}$<br>x 0 $\frac{\sqrt{2}}{2}$ + <sup>∞</sup><br>f ''(x) - o +<br>concavity down up<br>$(\frac{\sqrt{2}}{2}, -\frac{3}{2}, -\frac{1}{2}\ln 2)$ inflection point.                                                                            |  |

|     |   | Graph .                                                                                                                                                                                                                                                                                                                              |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.a | 1 |                                                                                                                                                                                                                                                                                                                                      |
| 4.b | 1 | 4.b-f(x) > -x , consider the part of (C) above (y= -x)<br>x > 1                                                                                                                                                                                                                                                                      |
|     |   | Part B                                                                                                                                                                                                                                                                                                                               |
| 1   | 3 | $\lim_{x \to 0} g(x) = +^{\infty} (y'y) \text{ is an asymptote to } (C');$<br>$\lim_{x \to +\infty} g(x) = +\infty$<br>$\lim_{x \to +\infty} \frac{g(x)}{x} = +\infty  (C') \text{ has a parabolic branch parallel to } (y'y).$                                                                                                      |
| 2   | 2 | $g'(x) = 2x + 2 (2 - \ln x) \left(\frac{-1}{x}\right) = \frac{2f(x)}{x}.$ $\frac{x}{g'(x)} = \frac{0}{x} + \frac{\infty}{x}$ $\frac{x}{g(x)} = \frac{0}{x} + \frac{1}{y}$ $g(\alpha) = \frac{1}{y} + \frac{1}{y}$ $f(\alpha) = 0; \alpha^2 = 2 - \ln \alpha.$ $g(\alpha) = \alpha^2 + (2 - \ln \alpha)^2 = \alpha^2 (1 + \alpha^2).$ |

