المادة: الرياضيـات الثشهادة: الثانويـة العامة الفرع: الـلوم العامـة نموذج رقم - \& المدّة : أربع سـاعات	الهيئة الأكاديميّة المشتركة قسم : الرياضيات	

$$
\begin{aligned}
& \text { ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختز ان المعلومات أو رسم البيانات. } \\
& \text { يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة). }
\end{aligned}
$$

I- (2pts)

Consider the two sequences (U_{n}) $\mathrm{n} \in \mathrm{IN}$ and $\left(\mathrm{V}_{\mathrm{n}}\right)$, defined as :

$$
\mathrm{U}_{0}=2, \mathrm{U}_{\mathrm{n}+1}=\sqrt{U_{n}} \text { and } \mathrm{V}_{n}=\ln \left(\mathrm{U}_{n}\right) \text { for all } \mathrm{n} \in \mathrm{~N} .
$$

1) a- Use mathematical induction to show that $U_{n}>1$ for all $n \in N$.
b- deduce that for all n in $\mathrm{N}, \mathrm{V}_{n}$ is defined and $\mathrm{V}_{\mathrm{n}}>0$.
2) a- Prove that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence whose common ratio and first term should be determined b- Express V_{n} in terms of n, then deduce an expression of U_{n} in terms of n.
c- Prove that the sequence $\left(\mathrm{U}_{n}\right)$ is decreasing. Deduce that $\left(\mathrm{U}_{n}\right)$ is convergent, then find its limit.
3) Let $S=V_{0}+V_{1}+\ldots .+V n$. and $P=U_{0} \times U_{1} \times \ldots \times U n$.

Calculate S in terms of n, then deduce P in terms of n.

II- (3pts).

In the image and sound section in a grand store, sets of a certain brand of TV and DVD are on sale .
. The probability that a client buys the TV is $\frac{3}{5}$.
. The probability that a client buys the DVD given that he bought the TV is $\frac{7}{10}$.
. The probability that a client buys the DVD is $\frac{23}{50}$.
Denote by T the event : the client buys the TV and by L the event :the client buys the DVD .

1) Determine the probabilities of the following events.

(The results should be expressed as fractions)

a) The client buys both items.
b) The client buys the DVD only .
c) The client buys at least one of the items.
d) The client does not buy any items.
2) Knowing the client does not buy the DVD, show that the probability to buy the TV is $\frac{9}{21}$.
3) Before the sale period, the TV costs 500000 LL and the DVD costs 200000 LL .

During the sale week, the store discounted 15% on the cost if a client buys only one item and 25% if a client buys both items .
Denote by S the effective sum paid by a certain client .
a) Determine the four possible value for S.
b) Determine the probability distribution for S.
c) Calculate the expected value for S .
4) Knowing that the client didn't buy a DVD, calculate the probability that the he didn't pay 425000LL . Explain.

III- (2 pts)

$\mathrm{O}, \mathrm{A}, \mathrm{F}$ and F^{\prime} are fixed. $\mathrm{OF}{ }^{\prime}=1, \mathrm{OF}=5$ and $\mathrm{OA}=6$. Let (C) be a variable circle tangent to (OA), (FD) and (F'S). (See the figure below)

Part A.

1) a- Calculate FD and F'S.
b- Prove that MF $+M F{ }^{\prime}=6$.
c- Deduce that M moves on a ellipse (E) with foci and major axis to be determined .
2) a- Determine the center I of (E). Show that O and A are two vertices of (E).
b- Construct B and B', the vertices of (E) on the non-focal axis .Calculate e.
c- H is a point on [FA) so that $\mathrm{AH}=\frac{3}{2}$ and (Δ) is the perpendicular at H to (OA).
Prove that (Δ) is a directrix to (E)
3) L is the point so that IFLB is a rectangle. Prove that $I \hat{L H}$ is a right angle.

Part B

The plane is referred to the system $(\mathrm{I} ; \vec{i}, \vec{j})$ with $\dot{i}=\frac{1}{2} \overrightarrow{I F}$.

1) a-Write an equation of (E).
b-Find an equation of (Δ^{\prime}), the $2^{\text {nd }}$ directrix to (E).
2) The perpendicular at F^{\prime} to (OA) meets (E) at G and G^{\prime}. (Δ^{\prime}) intersects the x-axis at K. a-Prove that (KG) and (KG^{\prime}) are tangent to (E).
b-Prove that $\frac{G F}{G F^{\prime}}=\frac{K F}{K F^{\prime}}$.
c-Calculate the area bounded be (E), (KG), (KG') and (IB).

In the space referred to an orthonormal system ($\mathrm{O} ; \dot{i}, \vec{j}, \vec{k}$), consider the points
$\mathrm{A}(1,-2,1)$ and $\mathrm{B}(2,-1,3)$. (P) is a plane containing (AB) and parallel to $\vec{v}(0,1,1)$.

1) Prove that $x+y-z+2=0$ is an equation of (P).
2) Consider the point $\mathrm{E}(2,2,0)$, and denote by (d) the line through E and perpendicular to (P).
a- Write a system of parametric equations of (d).
b- Find the coordinates of H orthogonal projection of E on (P).

In what follows , suppose that $\mathbf{H}(\mathbf{0 , 0 , 2})$.

3) a-Prove that $\mathrm{HA}=\mathrm{HB}$.
b- Write a system of parametric equations of the bissector of AHB.
4) a-Calculate the angle that (AE) makes with (P).
b- Write an equation of the plane (Q) containing (AE) and perpendicular to (P).
5) Consider in the plane (P) the circle (C) with center H and radius HA.
a-Prove that $\mathrm{F}(\sqrt{3},-\sqrt{3}, 2)$ is a point on (C$)$.Then show that (HF) perpendicular to (AB).
b- Write a system of parametric equations of the tangent at F to (C).
6) N is a variable point on (d). Find the coordinates of N so that the volume of the tetrahedron NABF is twice that EABF.

V- (3 points)

In the next figure, ABEC is a right trapezoid so that $\mathrm{AB}=1, \mathrm{AC}=2$, and $\mathrm{CE}=4$.
S is the similitude that maps A onto C and C onto E. (BC) intersects (AE) at I.

1) Calculate the scalar product $(\overrightarrow{B A}+\overrightarrow{A C}) \cdot(\overrightarrow{A C}+\overrightarrow{C E})$, deduce that (AE) is perpendicular to (BC)
2) Show that 2 is the scale factor of S and $-\frac{\pi}{2}$ is an angle of it .
3) a- Determine $\mathrm{S}(\mathrm{AE})$ and $\mathrm{S}(\mathrm{BC})$.
b- Deduce that I is the center of S.
c- Determine $\mathrm{S}(\mathrm{B})$.
4) G is the midpoint of $[\mathrm{AB}]$ and H is that of [EC] .
a- Prove that $\mathrm{H}=\operatorname{SoS}(\mathrm{G})$.
b- Express $\overrightarrow{I H}$ in terms of $\overrightarrow{I G}$.
5) F is the orthogonal projection of B on (EC) . h is the dilation with center F and scale factor $-\frac{1}{3}$
a-Determine an angle of hoS and so its scale factor .
b-Prove that C is the center of hoS.
6) a- The plane is referred to the direct orthonormal system ($\mathrm{A} ; \vec{u}, \vec{v}$) with $\vec{u}=\overrightarrow{A B}$ and $\vec{v}=\frac{1}{2} \overrightarrow{A C}$.
b- Find the complex form for S . Deduce z_{I}.
7) M is a variable point that moves o the curve (C)with equation : $y=\frac{2}{1+e^{x}}$, and $\mathrm{M}^{\prime}=\mathrm{S}(\mathrm{M})$.

M' moves on the curve $\left(C^{\prime}\right)=S((C))$.
a- Prove that the midpoint H of [CE] is on (C^{\prime}).
b- Write an equation of the tangent (T) to (C^{\prime}) at H .
c- Show that $y=2\left[1-\ln \left(\frac{4-x}{x}\right)\right]$ is an equation of (C').

VI- (7pts)

Part A.

f is a function defined over $] 0 ;+\infty\left[\right.$, as $f(x)=x^{2}-2+\ln x ;(\mathrm{C})$ is the graph of f in an orthonormal system ($\mathrm{O} ; \vec{i}, \vec{j}$).

1) Find $\lim f(x)$ as $x \rightarrow 0$ and as $x \rightarrow+\infty$ and $\lim \frac{f(x)}{x}$ as $\mathrm{x} \rightarrow+\infty$.
2) a- Set up the table of variations of f .
b- Prove that the equation $f(x)=0$ has a unique solution α so that $1.31<\alpha<1.32$.
c- Determine, according to x, the sign of $f(x)$.
3) Discuss, according to x, the concavity of (C).
4) a- Calculate $f(1), f(2)$, then $\operatorname{plot}(\mathrm{C})$.
b- Solve graphically $f(x)>-x$.

Part B.

g is the function defined over $] 0,+\infty\left[\right.$ as $g(x)=x^{2}+(2-\ln x)^{2} ;\left(\mathrm{C}^{\prime}\right)$ is the graph of g in a new system of axes .

1) Find $\lim g(x)$ as $x \rightarrow 0$ and as $x \rightarrow+\infty$ and $\lim \frac{g(x)}{x}$ as $x \rightarrow+\infty$.
2) Show that $g^{\prime}(\mathrm{x})=\frac{2 f(x)}{x}$, then set up the table of variations of g.

Verify that $\mathrm{g}(\alpha)=\alpha^{2}\left(1+\alpha^{2}\right)$.
3) Calculate $\mathrm{g}(1), \mathrm{g}(\mathrm{e})$ then plot ($\left.\mathrm{C}^{\prime}\right)$.
4) a- Verify that $x(\ln x-1)$ is an antiderivative of $\ln x$.
b- Let $\mathrm{z}=x(2-\ln x)^{2}$, calculate z^{\prime}, then find $\int g(x) d x$.
5) a-For $x \leq \alpha$, prove that g has an inverse function h .

Find D_{h}, R_{h}, then plot $\left(C_{h}\right)$ the graph of h in the same system as ($\left.\mathrm{C}^{\prime}\right)$.
b- Calculate the area of the region bounded by $\left(C_{h}\right)$, in terms of α, the two lines $\mathrm{y}=\alpha$ and $x=5$.
c- Find the point of $\left(C_{h}\right)$ where the tangent is parallel to the line with equation $y=-\frac{1}{2} x$.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم-؟الددّة : أربع ساعات	الهيئة الأكاديميّة المشتركة قسم : الرياضيات	

أسس التصحيح (تراعي تعليق الاروس والتوصيف المعدّل للعام الاراسي Y Y Y Y Y . 17 وحتى صدور المناهج المطورة)

Scale of Marks /80

$\begin{gathered} \hline \text { Question / } \\ \text { Mark } \\ \hline \end{gathered}$		Solution
Question I		
1.a	1	$U_{0}=2 \geq 1$, suppose that $U_{K}>1$. $\sqrt{U_{K}}>1$, hence $U_{K+1}>1$.
1.b	1	Since $U_{n}>1$, then $\ln \left(U_{n}\right)>0$ and V_{n} is defined.
$2 . a$	1	$V_{n+1}=\ln \left(U_{n+1}\right)=\ln \left(\sqrt{U_{n}}\right)=\frac{1}{2} \ln \left(U_{n}\right)=\frac{1}{2} V_{n}$ $\left(V_{n}\right)$ is a geometric sequence so that $V_{0}=\ln 2$ and $\mathrm{r}=\frac{1}{2}$
2.b	1	$\begin{aligned} & V_{n}=V_{0} \times r^{n}=\ln 2 \times\left(\frac{1}{2}\right)^{n} \\ & \ln \left(U_{n}\right)=V_{n} ; U_{n}=e^{V_{n}}=e^{\ln 2 \times\left(\frac{1}{2}\right)^{n}} \end{aligned}$
$2 . \mathrm{c}$	2	$\frac{U_{n+1}}{U_{n}}=e^{\ln 2 \times\left(\frac{1}{2} 2^{n+1}-\ln 2 \times\left(\frac{1}{2}\right)^{n}\right.}=e^{\left(\frac{1}{2}\right)^{n}\left(\frac{1}{2} \ln 2-\ln 2\right)}=e^{\left(\frac{1}{2}\right)^{n} \ln 2\left(\frac{1}{2}-1\right)}=e^{-\left(\frac{1}{2}\right)^{n+1} \ln 2}<1 .$ U_{n} is decreasing and having 1 as lower bound : $\left(U_{n}\right)$ convergent . If $\mathrm{n} \rightarrow+\infty$, then $\left(\frac{1}{2}\right)^{n} \rightarrow 0$ and $U_{n} \rightarrow 1$
3.	2	$\begin{aligned} \mathrm{S} & =V_{0}+V_{1}+V_{2}+\ldots .+V_{n}=\frac{V_{0}\left(r^{n+1}-1\right)}{r-1}=\frac{\ln 2\left[\left(\frac{1}{2}\right)^{n+1}-1\right]}{\frac{1}{2}-1}=-2 \ln 2\left[\left(\frac{1}{2}\right)^{n+1}-1\right] \\ S & =\ln U_{0}+\ln U_{1}+\ln U_{2}+\ldots+\ln U_{n} \\ & =\ln \left(U_{0} \times U_{1} \times \ldots \times U_{n}\right)=\ln \mathrm{p} \quad \text { Then } \mathrm{P}=\mathrm{e}^{s} \end{aligned}$
Question II		
1.a	1.5	$P(T \cap L)=P(T) \times P(L / T)=\frac{3}{5} \times \frac{7}{10}=\frac{21}{50} .$

1.b	1.5	$\begin{aligned} & P(L)=P(L \cap T)+P(L \cap \bar{T})=\frac{21}{50}+P(L \cap \bar{T}) \\ & \text { Then } P(L \cap \bar{T})=\frac{23}{50}-\frac{21}{50}=\frac{1}{25} \end{aligned}$
$1 . \mathrm{c}$	1.5	$P(T \cup L)=P(T)+P(L)-P(T \cap L)=\frac{3}{5}+\frac{23}{50}-\frac{21}{50}=\frac{16}{25} .$
1.d	1	$P(\bar{T} \cap \bar{L})=1-P(T \cup L)=\frac{9}{25} .$
2	1	$P(T / \bar{L})=\frac{P(T \cap \bar{L})}{P(\bar{L})}=\frac{P(T) \times P(\bar{L} / T)}{P(\bar{L})}=\frac{\left(\frac{3}{5}\right) \times\left(\frac{3}{10}\right)}{\left(\frac{21}{50}\right)}=\frac{9}{21}$
3.a	1	425000 for TV only , 170000 dor DVD only , 525000 for both, 0 for nothing.
3.b	2	P_{i} $\frac{18}{50}$ $\frac{2}{50}$ $(425)=P(T \cap \bar{L})=\frac{3}{5} \times \frac{3}{10} ; P(170)=P(L \cap \bar{T})=\frac{2}{5} \times \frac{1}{10}$
$3 . \mathrm{c}$	1	$\mathrm{E}(\mathrm{D})=\sum D_{i} P_{i}=\frac{15190}{50} \approx 304000 L L .$
4	1.5	$\bar{L}=(\bar{L} \cap T) \operatorname{or}(\bar{L} \cap \bar{T})$; Since he didn't pay 425000 , then he didn't buy any item. $P \bar{T} / \bar{L})=\frac{P(\bar{T} \cap \bar{L})}{P(\bar{L})}=\frac{18 / 50}{27 / 50}=\frac{2}{3}$
Question III		
Part A		
1.a	0.75	$\mathrm{FD}=\mathrm{OA}=1$ and $\mathrm{F}^{\prime} \mathrm{S}=\mathrm{F}^{\prime} \mathrm{A}=5$.
1.b	0.75	$\begin{aligned} \mathrm{b}-\mathrm{MF}+\mathrm{MF}^{\prime} & =\mathrm{MD}+\mathrm{DF}+\mathrm{MF}{ }^{\prime}=1+\mathrm{MS}+\mathrm{MF}{ }^{\prime} \\ & =1+\mathrm{F}{ }^{\prime} \mathrm{S}=1+5=6=\mathrm{OA} . \end{aligned}$
$1 . \mathrm{c}$	0.75	$\mathrm{c}-\mathrm{MF}+\mathrm{MF}=6 ; \mathrm{M}$ moves on the ellipse with foci F and F^{\prime} and $2 \mathrm{a}=6$ The focal axis is (FF')
2.9	0.75	a- The center I is the midpoint of [FF']. $\mathrm{IO}=\mathrm{IA}=3=\mathrm{a}$; Since O and A are on the focal axis, then they are two vertices of (E).
2.b	1	$b-B$ and B^{\prime} are on the perpendicular bisector of [FF^{\prime}] so that $\begin{aligned} & \mathrm{IB}=\mathrm{IB}^{\prime}=\sqrt{9-4}=\sqrt{5} . \\ & \mathrm{e}=\frac{c}{a}=\frac{I F}{I A}=\frac{2}{3} . \end{aligned}$
$2 . \mathrm{c}$	1	$\mathrm{AH}=\frac{3}{2}$, then $\mathrm{IH}=3+\frac{3}{2}=\frac{9}{2}=\frac{a^{2}}{c} .(\Delta)$ is a directrix to (E).

3		$\mathrm{IL}^{2}=9 ; \mathrm{IH}^{2}=\frac{81}{4}$ and $\mathrm{LH}^{2}=5+\frac{25}{4}=\frac{45}{4}$. $\mathrm{IH}^{2}=I L^{2}+L H^{2}$ then the triangle ILH is right at L .
Part B		
1.a	0.5	$\frac{x^{2}}{9}+\frac{y^{2}}{5}=1 .$
1.b	0.5	$\left(\Delta^{\prime}\right): x=-\frac{9}{2}$
2.9	0.5	$\mathrm{G}\left(-2, \frac{5}{3}\right)$ and $\mathrm{G}^{\prime}\left(2, \frac{5}{3}\right) ; \mathrm{K}\left(-\frac{9}{2}, 0\right)$. Derive wrt x : $\frac{2 x}{9}+\frac{2 y y^{\prime}}{5}=0 ; \mathrm{y}^{\prime}{ }_{G}=\frac{2}{3}=\operatorname{slope}(K G)$. (KG) is tangent to (E) and by symmetry, (KG^{\prime}) is also tangent to (E).
2.b	0.5	$\frac{G F}{G F^{\prime}}=\frac{K F}{K F^{\prime}}(\text { verification }) .$
$2 . \mathrm{c}$	1	$\begin{aligned} & \text { (KG) intersects (IB) at } \mathrm{J}(0,3) . \\ & \begin{aligned} \text { Half (area) } & =\text { area (triangle } \mathrm{KIJ})-\frac{1}{4} \text { area (E). } \\ & =\frac{1}{2} \times \frac{9}{2} \times 3-\frac{1}{4}(\pi \times 3 \times \sqrt{5})=\frac{27-3 \pi \sqrt{5}}{4} . \\ \text { Total area } & =\frac{27-3 \pi \sqrt{5}}{2} u^{2} \end{aligned} . \end{aligned}$
Question IV		
1	1	$\overrightarrow{A M} \cdot(\overrightarrow{A B} \wedge \vec{v})=0 ; \mathrm{x}+\mathrm{y}-\mathrm{z}+2=0(\mathrm{P})$
2.1	1	a)(d) : $\mathrm{x}=\mathrm{k}+2 ; \mathrm{y}=\mathrm{k}+2 ; \mathrm{z}=-\mathrm{k}$
$2 . \mathrm{b}$	1	b) $\mathrm{E}=(d) \cap(P): \mathrm{k}=-2$ and $\mathrm{H}(0,0,2)$
3 . 1	0.5	$\mathrm{HA}=\mathrm{HB}=\sqrt{6}$
3.b	1	The bisector is (HG) with $2 \mathrm{G}\left(\frac{3}{2}, \frac{-3}{2}, 2\right)$ midpoint of $[\mathrm{AB}]$. $\mathrm{x}=\mathrm{m}, \mathrm{y}=-\mathrm{m}, \mathrm{z}=2$.
4.9	1	The angle is HAE , ; \cos HAE $=\frac{A H}{A E}$ or \sin or $\tan \ldots$
4.b	1.5	$\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{x}) \in(Q) \text {. Then } \overrightarrow{A M} \cdot\left(\overrightarrow{A E} \wedge \overrightarrow{n_{P}}\right)=0$ Therefore $\mathrm{x}+\mathrm{z}-2=0$
5.a 5.b	2 1.5	$\begin{aligned} & F(\sqrt{3},-\sqrt{3}, 2) \in(P) \text { and } H F=H A=\sqrt{6} \\ & \overrightarrow{H F} \cdot \overrightarrow{A B}=0 \end{aligned}$ b)the tangent at F is the line through F and parallel to (AB). $x=t, y=t, z=2$

6	1.5	the base is $A B F$, then $d(N, P)=d(E, P)$ $\begin{aligned} & \frac{\|k+2+k+2+k+2\|}{\sqrt{3}} \text { then } E H=2 \sqrt{3} \\ & \|3 x+6\|=6 \text { hence } \mathrm{k}=0 \text { or } \mathrm{k}=-4 \end{aligned}$
Question V		
1	1	1) ${ }^{(\overrightarrow{B A}+\overrightarrow{A C}) \cdot(\overrightarrow{A C}+\overrightarrow{C E})=0}$ then (BC) is perpendicular to (AE).
2	1	2) $k=\frac{C E}{A C}=\frac{4}{2}=2$ and $\alpha=(\overrightarrow{A C}, \overrightarrow{C E})=\frac{-\pi}{2}+2 k \pi$
3.a	1	3) a- $\mathrm{S}(\mathrm{AE})=$ line through C and perpendicular to (AE). Then $\mathrm{S}(\mathrm{AE})=(\mathrm{BC})$. Similary $S(B C)=(A E)$..
3.b	1	$\mathrm{b}-\mathrm{S}(\mathrm{I})=\mathrm{S}(\mathrm{AE}) \cap \mathrm{S}(\mathrm{BC})=(\mathrm{BC}) \cap(\mathrm{AE})=\mathrm{I} .$ I is the center of S.
3.c	1	c- Since $\mathrm{CA}=2 \mathrm{AB}$ and $(\overrightarrow{A B}, \overrightarrow{C A})=\frac{\pi}{2}$ andS $(A)=C$ then $\mathrm{S}(\mathrm{B})=\mathrm{A}$.
4.a	0.5	4) a- $\mathrm{S}(\mathrm{G})=\mathrm{G}^{\prime}$ midpoint of [CA] and $\mathrm{S}\left(\mathrm{G}^{\prime}\right)=\mathrm{H}$ midpoint of $[\mathrm{AC}]$.
4.b	0.5	b- SoS = dilation (I;-4)then $\overrightarrow{I H}=-4 \overrightarrow{I G}$
5.a	0.5	$\text { 5)a-h(F; } \left.\frac{-1}{3}\right) o S\left(I, 2, \frac{-\pi}{2}\right)=S^{\prime}\left(?, \frac{2}{3}, \frac{\pi}{2}\right) \text {. }$
5.b	0.5	b- $\overrightarrow{F C}=\frac{-1}{3} \overrightarrow{F E}$ then $\mathrm{C}=\mathrm{h}(\mathrm{E})$ but $\mathrm{S}(\mathrm{C})=\mathrm{E}$ then $\operatorname{hoS}(\mathrm{C})=\mathrm{C}$ and C is the center of hoS
6	1	$\begin{aligned} & \mathrm{z}^{\prime}=-2 \mathrm{iz}+\mathrm{b}, \mathrm{z}_{\mathrm{c}}=-2 \mathrm{iz}_{\mathrm{A}}+\mathrm{b} . \mathrm{b}=2 \mathrm{i} . \\ & \mathrm{z}^{\prime}=-2 \mathrm{iz}+2 \mathrm{i}, \quad \mathrm{z}_{\mathrm{l}}(1+2 \mathrm{i})=2 \mathrm{i} \text { then } z_{I}=\frac{4}{5}+\frac{2 i}{5} \end{aligned}$
7.a	1	$\mathrm{G}^{\prime}(0,1)$ is on (C) and $\mathrm{H}=\mathrm{S}\left(\mathrm{G}^{\prime}\right)$ is on (C^{\prime}).
7.b	1.5	$f^{\prime}(x)=\frac{-2 e^{x}}{\left(1+e^{x}\right)^{2}}$ and $f^{\prime}(0)=-\frac{1}{2}=$ slope of the tangent therefore the slope of the tangent at H to $\left(\mathrm{C}^{\prime}\right)$ is 2 equation of (T) is : $y=2 x-2$
7.c	1.5	$x^{\prime}+i y^{\prime}=-2 i(x+i y)+2 i \quad x^{\prime}=2 y$ and $y^{\prime}=2-2 x$ replace in(C) : $\begin{aligned} & \frac{x^{\prime}}{2}=\frac{2}{1+e^{\frac{2-y^{\prime}}{2}}} e^{\left(\frac{2-y^{\prime}}{2}\right)}=\frac{4}{x^{\prime}}-1 \\ & \frac{2-y^{\prime}}{2}=\ln \left(\frac{4-x}{x}\right) e q \text { of }\left(\mathrm{C}^{\prime}\right): y=2\left[1-\ln \left(\frac{4-x}{x}\right)\right] . \end{aligned}$

3	3	$\mathrm{g}(1)=5 \mathrm{~g}(\mathrm{e})=\mathrm{e}^{2}+1 .$
4.a	1	$[x(\ln x-1)]^{\prime}=\ln x$
4.b	2	$\begin{aligned} & \mathrm{z}=\mathrm{x}(2-\ln \mathrm{x})^{2} \\ & \quad \mathrm{z}^{\prime}=(2-\ln \mathrm{x})^{2}-2+\ln \mathrm{x} . \\ & \int g(x) d x=\frac{x^{3}}{3}+\int\left(z^{\prime}+2-\ln x\right) d x=\frac{x^{3}}{3}+z+2 x+x(\ln x-1)=\frac{x^{3}}{3}+z+x+x \ln x \end{aligned}$
5.a	2	for $\mathrm{x} \leq \alpha, \mathrm{g}$ is continuous and strictly decreasing, then it has an inverse function h ; $\begin{aligned} & \mathrm{D}_{\mathrm{h}}=\left[\alpha^{2}\left(1+\alpha^{2}\right),+^{\infty}[\right. \\ & \left.\left.\mathrm{R}_{\mathrm{h}}=\right] 0, \alpha\right] ;\left(\mathrm{C}_{\mathrm{h}}\right) \text { is the symmetric of }\left(\mathrm{C}^{\prime}\right) \text { wrt }(\mathrm{y}=\mathrm{x})(\text { see the } \operatorname{graph}(\mathrm{Ch}) . \end{aligned}$
5.b	3	$\begin{aligned} & \text { Area }=\text { area bounded by }\left(\mathrm{C}^{\prime}\right), \mathrm{x}=\alpha \text { and } \mathrm{y}=5 \\ & =5(\alpha-1)-\int_{1}^{\alpha} g(x) d x \end{aligned}$
5.c	2	$h^{\prime}(x)=\frac{-1}{2} ; g^{\prime}(x)=-2$ or $f(x)=-x$, then $x=1$. $(1,5)$ is on $\left(C^{\prime}\right) ;(5,1)$ is on C_{h}.

