المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم -٢-المدة: ساعتان

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (4 points).

The following statements are true. Justify.

- 1) The complex plane is referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$. Consider the distinct points A, B and C with affixes a, b and c so that $\frac{c-a}{b-a} = 2i$; therefore, A is on the circle with diameter [BC].
- 2) If $\frac{\pi}{2}$ is an argument of z, then |i+z|=1+|z|.
- 3) If $z = 3\sqrt{3} + 3i$ then z^3 is pure imaginary.
- **4)** If $z = e^{i\theta}$, then $z^2 + \frac{1}{z^2}$ is real.
- **5)** $|i\overline{z} + 1| = |z + i|$.

II- (4 points)

Given, in the space of an orthonormal system $(0; \vec{i}, \vec{j}, \vec{k})$, the point A(2; 1; 5) and the two straight

lines (d) and (d') defined by: (d) $\begin{cases} x=2m+4\\ y=2m+1\\ z=-3m-5 \end{cases} \text{ and (d') } \begin{cases} x=t+2\\ y=2t-1\\ z=-2t+6 \end{cases}$ where m and t are real

numbers. Let (P) be the plane determined by A and (d').

- 1) a) Show that A is neither on (d), nor on (d')
 - **b**) Prove that (d) and (d') are skew.
- 2) a) Show that 2x + y + 2z 15 = 0 is an equation of the plane (P).
 - **b**) Prove that (d) is parallel to (P).
- 3) Let (Δ) be the line through A and parallel to (d) .
 - a) Write a system of parametric equations for (Δ) .
 - b) Find the coordinates of B , the meeting point of (Δ) and (d') .
- **4**) Let E be the orthogonal projection of A on (d').
 - a) Calculate the coordinates of E.
 - **b**) Calculate the area of the triangle AEB.
- 5) Let M be a point on (d), calculate the volume of tetrahedron MABE.

III- (4 points)

U₁ and U₂ are two given urns such that:

U₁ contains 10 balls: 6 red and 4 yellow.

U₂ contains 10 balls: 5 red, 4 black and 1 green.

A fake coin is given such that the probability of having a head is three times more than that of having a tail.

The coin is tossed.

- If we get a tail, we select, randomly and **simultaneously**, two balls from urn U_1
- If we get a head, we select at random two balls from U_2 one after the other with replacement.

Consider the following events:

 U_1 : "The selected urn is U_1 ."

R: "The selected balls are red."

- 1) Show that $P(U_1) = \frac{1}{4}$.
- 2) Calculate $P(R/U_1)$ and $P(R \cap U_1)$. Deduce that $P(R) = \frac{13}{48}$.
- 3) The two selected balls are red. Calculate the probability that they come from U_1 .
- 4) Let X be the random variable that represents the number of red balls obtained. Determine the probability distribution of X.

IV- (8 points)

Part A

Consider the function g defined over]1, $+\infty$ [as : $g(x) = x (lnx)^2 - e$.

- 1) Determine the limit of g(x) as $x \to 1$ and $x \to +\infty$.
- 2) a) Set up the table of variations of g.
 - b) if x > e, prove that g(x) > 0.

Part B

Let f be a function defined over]1,+ ∞ [as $f(x) = e^{-\frac{\ln x - 1}{\ln x}} - x$. Let (C) be the representative curve

of f in an orthonormal system $(O; \vec{i}, \vec{j})$ and (d) the line with equation y = e - x.

- 1) a) Find $\lim_{x \to 1} f(x)$; deduce an asymptote to (C).
 - **b**) Prove that (d) is an asymptote to (C).
 - c) Prove that (C) is below (d).
- **2) a)** Prove that $f'(x) = \frac{-g(x)}{x \ln^2 x}$.
 - **b**) Set up the table of variations of f.
 - c) Draw (C).
- 3) a) For $1 \le x \le e$, prove that f has an inverse function h. Determine the domain of h.
 - **b**) Draw the curve (C') of h in the same system as that of (C).
- 4) Let (Δ) be the line with equation y=-x-e.
 - a) Determine the coordinates of point A, the meeting point of (C') and (Δ).
 - **b)** Write an equation of (T), the tangent at A to the curve (C').
 - c) Solve graphically the inequality h(x) + e > -x.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: علوم الحياة نموذج رقم - ٢ -المدة: ساعتان

الهيئة الأكاديميّة المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٦-٢٠١ وحتى صدور المناهج المطوّرة)

Question I (4 points)		Mark
1	$\frac{c-a}{b-a} = 2i \text{ then } \frac{z_{\overline{AC}}}{z_{\overline{AB}}} = \frac{\pi}{2} \text{ and } (\overline{AB}, \overline{AC}) = \frac{\pi}{2}. \text{ Therefore, A is on the circle with diameter [BC].}$	0.75
2	$arg(Z) = \frac{\pi}{2}$ then $z = ib$ with $b > 0$. i+z = i(1+b) and $ i+z = 1+b$. 1+ z = 1+ ib = 1+b.	0.75
3	$Z = 3\sqrt{3} + 3 i = 6e^{i\frac{\pi}{6}}$ and $z^3 = 216e^{i\frac{\pi}{2}}$ pur imaginary.	0.75
4	$Z = e^{i\theta}$ then $z^2 + \frac{1}{z^2} = e^{2i\theta} + e^{-2i\theta} = 2\cos(2\theta)$ (real).	0.75
5	$\begin{vmatrix} i\overline{z} + 1 = i(a - ib) + 1 = 1 + b + ia = \sqrt{(1 + b)^2 + a^2} \\ z + i = a + i(b + 1) = \sqrt{a^2 + (b + 1)^2} .$	1

Question II (4 points)		Mark
1.a	A is not on (d) and A is not on (d').	0.5
1.b	(d) and (d') are neither parallel nor intersecting.	0.5
2.a	A and (d') satisfy the equation: $2x + y + 2z - 15 = 0$ (P).	0.5
2.b	$\overrightarrow{V_d}(2,2,-3)$ $\overrightarrow{n_p}(2,1,2) = 0$ and (d) is not on (P) then (d) is parallel to (P).	0.5
3.a	(Δ): $x = 2k+2$, $y = 2k+1$, $z=-3k+5$.	0.5
3.b	B(4,3,2) for k=1 and t =2.	
4.a	For $E\left(\frac{8}{3}; \frac{1}{3}; \frac{14}{3}\right)$ with $\overrightarrow{AE}.\overrightarrow{U_{(d')}} = 0$	0.5
4.b	$Area = \frac{AE.EB}{2} = 2u^2$	0.5
5	$V = \frac{1}{6} \overrightarrow{AM}.(\overrightarrow{AB} \wedge \overrightarrow{AE}) = \text{constant because (d) is parallel to (P)}.$	0.5

Question III (4 points)		Mark
1)	$P(U_1) + P(\overline{U_1}) = 1$ and $P(\overline{U_1}) = 3P(U_1)$; then $P(\overline{U_1}) = \frac{3}{4}$ and $P(U_1) = \frac{1}{4}$	0.5
2)	$P(R / U_1) = \frac{1}{3}$ $P(R \cap U_1) = P(R / U_1) \times P(U_1) = \frac{1}{12} \text{ and } P(R \cap \overline{U_1}) = P(R / \overline{U_1}) \times P(\overline{U_1}) = \frac{3}{16}$ $P(R) = P(R \cap U_1) + P(R \cap \overline{U_1}) = \frac{13}{48}$	0.25 0.5 0.5 0.5
3)	$P(U_1/R) = \frac{4}{13}$	0.5
4)	$X_{\Omega} = \{0, 1, 2\}; P(X = 0) = \frac{53}{240}; P(X = 1) = \frac{61}{120}; P(X = 2) = \frac{13}{48}$	0.25 0.5 0.5

	Question IV (8 points)	Mark
Part		l .
1	$x \to 1, g(x) \to -e$ $x \to +\infty, g(x) \to +\infty$	0.5
2.a	$g'(x) = (\ln x)^{2} + 2x(\ln x) \frac{1}{x} = \ln x(\ln x + 2).$ $\frac{x}{g'(x)} \frac{1}{0} + \infty$ $g(x) -e + \infty$	0.5
2.b	g(e)=0, then $g(x)>0$ for $x>e$.	0.5
	Part B	
1.a	$x \to 1, f(x) \to -\infty$ then x=1 is a vertical asymptote. $x \to +\infty, f(x) \to -\infty$.	0.25
1.b	$\lim_{x \to +\infty} [f(x) - e + x] = \lim_{x \to +\infty} e \left[\frac{\ln x - 1}{\ln x} - 1 \right] = 0$ Then (d) is an asymptote to (C).	0.5
1.c	$f(x) - y = e\left(\frac{-1}{\ln x}\right) < 0 \text{ then (C) is below (d).}$	0.5
2.a	f'(x)= e($\frac{1}{x \ln^2 x}$) - x = $\frac{-g(x)}{x \ln^2 x}$.	0.75
2.b	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5

2.c		1
3.a	For $x \in]1;e]$, f is continuous and strictly increasing, then f has an inverse function h .Dh=]- ∞ ,-e].	0.5
3.b	Plot (C')	0.5
4.a	(Δ) is the symmetric of (Δ) with respect to y= x .Find (Δ) \cap (C): $e(\frac{\ln x - 1}{\ln x}) - x = -x - e.$ $\ln x = \frac{1}{2} \text{ and } x = \sqrt{e}$ (Δ) \cap (C)= A' (\sqrt{e} , $-\sqrt{e} - e$). (Δ) \cap (C')= A(- $\sqrt{e} - e$, \sqrt{e})	0.5
4.b	f'(x) = $\frac{-g(x)}{x \ln^2 x}$; f'(\sqrt{e})= 1-4 \sqrt{e} . Slope of (T) = $\frac{1}{1-4\sqrt{e}}$. (T): y - \sqrt{e} = $\frac{1}{1-4\sqrt{e}}(x+\sqrt{e}+e)$.	1
4.c	h(x) > -x-e. Consider the part of (C') that is above (Δ) then $x \in]-\sqrt{e}-e$, -e].	0.5