المادة: الفيزياء الثشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 1 المدّة: ساعتان	الهيئة الأكاديميّة المشتركة	

نموذج مسابقة (يراعي تعليق الاروس والتوصيف المعدّل للعام الاراسي 2016-2017 وحتى صدور المناهج المطوّرة)
This test includes three mandatory exercises. The use of non-programmable calculators is allowed.

Exercise 1 ($61 / 2$ points) Young's slits

Consider the Young's slits device (Doc 1) made up of two very thin and horizontal slits S_{1} and S_{2} separated by a distance $\mathrm{a}=1 \mathrm{~mm}$, a screen (E) parallel to the plane containing S_{1} and S_{2} and a monochromatic light source S.
The screen (E) is at a distance $\mathrm{D}=2 \mathrm{~m}$ from the midpoint I of $\left[\mathrm{S}_{1} \mathrm{~S}_{2}\right]$.
The light source (S) is on the perpendicular bisector of [$\mathrm{S}_{1} \mathrm{~S}_{2}$]. This bisector meets the screen (E) at a point O . The wavelength in air of the monochromatic light is $\lambda=650 \mathrm{~nm}$.

1) A pattern is observed on the screen (E). Indicate the name of the correspondent phenomenon.
2) State the conditions ensured by S_{1} and S_{2} in order to obtain this pattern.
3) Consider a point M of the pattern observed on the screen (E) such as $\overline{\mathrm{OM}}=\mathrm{x}$. Take $d_{1}=S_{1} M$ and $d_{2}=S_{2} M$. Write the relation that gives the optical path difference $\delta=d_{2}-d_{1}$ at M in terms of a, D and x.
4) Define the interfringe distance i.
5) Give the expression of i in terms of λ, D and a, then calculate its value.
6) The point O coincides with the centre of a fringe called central fringe.

6-1) Calculate the optical path difference δ at O .
6-2) Specify whether this fringe is bright or dark.
7) Let N be the centre of a fringe where $\delta=2,275 \mu \mathrm{~m}$. Specify whether this fringe is bright or dark.
8) S is at a distance $d=10 \mathrm{~cm}$ from I. We displace S vertically of a distance $y=1 \mathrm{~cm}$ to the side of S_{1}. The new optical path difference is then: $\delta^{\prime}=\frac{a x}{D}+\frac{\text { ay }}{d}$. Specify the direction of the displacement of the centre of the central fringe (to the side of S_{1} or S_{2}) and calculate the displacement.

Exercise 2 (6 $1 / 2$ points) (RC) series circuit

The electric circuit of the document (Doc 2) is formed of:

- A generator delivering across its terminals a constant voltage $\mathrm{E}=8 \mathrm{~V}$;
- A resistor of unknown resistance R ;
- A capacitor of capacitance $\mathrm{C}=100 \mu \mathrm{~F}$, initially discharged;
- A switch K.

At the instant $\mathrm{t}_{0}=0$, we close the switch K .
At an instant t, the capacitor is charged by q and the circuit carries a current i.

1) Redraw the figure of the document (Doc 2) and show the connections of an oscilloscope that allows to display the voltage $\mathrm{u}_{\mathrm{G}}=\mathrm{E}$ across the generator and the voltage $\mathrm{u}_{\mathrm{C}}=\mathrm{u}_{\mathrm{AB}}$ across the capacitor.
2) Write the expression of the current i in terms of q.
3) Deduce the expression of i in terms of the capacitance C and the voltage u_{c}.
4) Determine the differential equation that describes the variation of u_{C} as a function of time.
5) The solution of this differential equation is: $u_{C}=D\left(1-e^{-\frac{t}{\tau}}\right)$. Determine the expressions of the constants D and τ in terms of E, R and C .
6) Determine, at the instant $t=\tau$, the expression of the voltage u_{C} in terms of E.
7) Referring to the graph of $u_{C}=f(t)$ of the document (Doc 3) below:

7-1) Determine the value of τ.
7-2) Deduce the value of the resistance R .

8) Determine the expression of the current i as a function of time t .
9) Deduce the value of the current i in steady state.

Exercise 3 (7 points) Horizontal elastic pendulum

An air puck (S) of mass $\mathrm{m}=709 \mathrm{~g}$ is attached to the free end of a spring (R) of un-jointed turns, of negligible mass and of stiffness $\mathrm{k}=7 \mathrm{~N} . \mathrm{m}^{-1}$.
This puck, of centre of mass G, may slide without friction on a horizontal rail (Doc 4). The document (Doc 4) shows a horizontal axis Ox of origin O. At equilibrium, G coincides with O.
(S) is shifted 3 cm from $\mathrm{O}\left(\overrightarrow{O G}_{0}=\mathrm{x}_{0} \overrightarrow{\mathrm{l}}=3 \overrightarrow{\mathrm{l}}\right)$ in the positive direction and released without velocity at the instant $\mathrm{t}_{0}=0$.
At an instant t, x is the abscissa of G and $v=\frac{d x}{d t}$ is the algebraic measure of its velocity.

1) The mechanical energy of the system ((S), (R), Earth) is conserved.

1-1) Determine the second order differential equation in x.
1-2) Verify that $x=x_{m} \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right)$ is the solution of this differential equation.
1-3) Calculate the values of the constants x_{m} and φ.
2) Write down the expression of the natural period T_{0} of the motion in terms of k and m then calculate its value.
3) The document (Doc 5) below shows the curves giving the variations of the kinetic energy KE of (S), of the elastic potential energy PE_{e} of (R) and of the mechanical energy ME of the system $\left((\mathrm{S}),(\mathrm{R})\right.$, Earth). Identify the curves KE, PE_{e} and ME of the document (Doc 5).

4) Each of the curves A and C is sinusoidal of a period T. Referring to the graph of document (Doc 5) :

4-1) Pick up the value of the period T;
4-2) Compare its value to the natural period T_{0} of the motion.

المادة: الفيزياء الثشهادة: الثانوية العامّة الفرع: علوم الحياة نموذج رقم 1 المدّة: ساعتان	الهيئة الأكاديميّة المشتركة قسم: العلوم	
2017 وحنى صدور اللمناهج (المطّرّ)	التّوصيف المعدّل للعام الدا	

Exercise 1 (6 $1 / 2$ points) Y		
Question	Answer	Mark
1	Interference.	1/4
2	The light sources must be synchronous (they must have the same frequency) and coherent (they must keep a constant phase difference).	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \end{aligned}$
3	$\delta=\frac{\mathrm{ax}}{\mathrm{D}}$	1/2
4	The interfringe distance is the distance between the centers of two consecutive fringes of the same nature.	1/2
5	$\begin{aligned} & i=\frac{\lambda D}{a} \\ & \Rightarrow \quad i=\frac{650 \times 10^{-9} \times 2}{10^{-3}} \Rightarrow i=1.3 \times 10^{-3} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 2 \end{aligned}$
6-1	$\begin{aligned} & \mathrm{d}_{2}=\mathrm{d}_{1} \\ & \Rightarrow \quad \delta=\mathrm{d}_{2}-\mathrm{d}_{1}=0 \\ & \text { or } \\ & \mathrm{x}=0 \\ & \Rightarrow \quad \delta=\frac{\mathrm{ax}}{\mathrm{D}}=0 \end{aligned}$	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \end{aligned}$ $1 / 4$ $1 / 4$
6-2	$\delta=0 \text { so } \delta=\mathrm{k} \lambda$ with $\mathrm{k}=0 \in \mathbf{Z}$ The interference is constructive and the fringe is bright.	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$
7	$\begin{aligned} & \frac{\delta}{\lambda}=\frac{2.275 \times 10^{-6}}{650 \times 10^{-9}}=3.5 \\ & \text { so } \frac{\delta}{\lambda}=\mathrm{k}+\frac{1}{2} \text { with } \mathrm{k}=1 \in \mathbf{Z} \end{aligned}$ The interference is destructive and the fringe is dark.	$\begin{aligned} & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \\ & 1 / 4 \end{aligned}$
8	$\begin{aligned} & \delta=\frac{\mathrm{ax}_{\mathrm{O}^{\prime}}}{\mathrm{D}}+\frac{\mathrm{ay}}{\mathrm{~d}}=0 \Rightarrow \mathrm{x}_{\mathrm{O}^{\prime}}=-\frac{\mathrm{y} \cdot \mathrm{D}}{\mathrm{~d}} \\ & \Rightarrow \mathrm{x}_{\mathrm{O}^{\prime}}=-\frac{10^{-2} \times 2}{10 \times 10^{-2}}=-0.2 \mathrm{~m} \end{aligned}$ The central fringe moves 0.2 m towards S_{2}	$1 / 4$ $1 / 4$ $1 / 4$ $1 / 4$

Exercise	61/2 points) (RC) series circuit	
Question	Answer	Mark
1		1/2
2	$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}$	1/2
3	$\mathrm{q}=\mathrm{Cu}_{\mathrm{C}}$ so $\mathrm{i}=\mathrm{C} \frac{\mathrm{du}}{\mathrm{C}}$ dt	1/2
4	Law of addition of voltages: $\begin{aligned} & u_{P M}=u_{P A}+u_{A B}+u_{B M} \\ & u_{P A}=u_{R} ; u_{A B}=u_{C} \text { and } u_{B M}=0 \\ & \text { So }: u_{R}+u_{C}=E \quad V t \end{aligned}$ Ohm's law: $\mathrm{u}_{\mathrm{R}}=\mathrm{Ri} \Rightarrow \mathrm{u}_{\mathrm{R}}=\mathrm{RC} \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}$ The differential equation in terms of u_{C} is then: $R C \frac{d u_{C}}{d t}+u_{C}=E$	$1 / 2$ $1 / 2$
5	$\begin{aligned} & u_{C}=D\left(1-e^{-\frac{t}{\tau}}\right) \Rightarrow u_{C}=D-D e^{-\frac{t}{\tau}} \\ & \frac{d u_{C}}{d t}=-D\left(-\frac{1}{\tau}\right) e^{-\frac{t}{\tau}}=\frac{D}{\tau} e^{-\frac{t}{\tau}} \end{aligned}$ Replace u_{C} and $\frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{dt}}$ by their expressions in the differential equation. We get: $\begin{aligned} & \mathrm{RC} \frac{\mathrm{D}}{\tau} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}+\mathrm{D}-\mathrm{De}^{-\frac{\mathrm{t}}{\tau}}=\mathrm{E} \quad \forall \mathrm{t} \\ & \mathrm{D}\left(\frac{\mathrm{RC}}{\tau}-1\right) \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}+\mathrm{D}-\mathrm{E}=0 \quad \mathrm{Vt} \end{aligned}$ Identifying, we get: $\begin{aligned} & \mathrm{D}-\mathrm{E}=0 \Rightarrow \mathrm{D}=\mathrm{E} \\ & \left(\frac{\mathrm{RC}}{\tau}-1\right)=0 \Rightarrow \tau=\mathrm{RC} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$
6	At $\mathrm{t}=\tau ; \mathrm{u}_{\mathrm{C}}=\mathrm{E}\left(1-\mathrm{e}^{-\frac{\tau}{\tau}}\right)=\mathrm{E}\left(1-\mathrm{e}^{-1}\right) \approx 0,63 \mathrm{E}$	1/2
7-1	At $\mathrm{t}=\tau ; \mathrm{u}_{\mathrm{C}}=0.63 \mathrm{E}=0.63 \times 8=5.04 \mathrm{~V} \approx 5 \mathrm{~V}$ from the graph we get: $\tau=2 \mathrm{~s}$	1/2
7-2	$\mathrm{R}=\frac{\tau}{\mathrm{C}} \Rightarrow \mathrm{R}=\frac{2}{100 \times 10^{-6}}=2 \times 10^{4} \Omega$	1/2

8	$i=C \frac{d u_{C}}{d t}=C \frac{E}{\tau} e^{-\frac{t}{\tau}}=C \frac{E}{R C} e^{-\frac{t}{\tau}}=\frac{E}{R} e^{-\frac{t}{\tau}}$	$1 / 2$
9	Permanent regime: $t=\infty ; i=\frac{E}{R} e^{-\frac{\infty}{\tau}}=\frac{E}{R} \times 0=0 A$	$1 / 2$

Exercise 3 (7 points)

Horizontal elastic pendulum

\begin{tabular}{|c|c|c|}
\hline Question \& Answer \& Mark \\
\hline 1-1 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{PE}_{\mathrm{g}}=\text { constant because the rail is horizontal } \Rightarrow \frac{\mathrm{dPE}_{\mathrm{g}}}{\mathrm{dt}}=0 \\
\& \mathrm{ME}=\mathrm{KE}+\mathrm{PE}_{\mathrm{e}}+\mathrm{PE}_{\mathrm{g}}
\end{aligned}
\] \\
The mechanical energy of the system (puck, spring, Earth) is conserved
\[
\begin{aligned}
\& \mathrm{ME}=1 / 2 \mathrm{mv}^{2}+1 / 2 \mathrm{kx}^{2}+\mathrm{PE}_{\mathrm{g}}=\text { constant } \quad \forall \mathrm{t} \Rightarrow \frac{\mathrm{~d}(\mathrm{ME})}{\mathrm{dt}}=0 \quad \forall \mathrm{t} \\
\& \Rightarrow \mathrm{mx}^{\prime} \mathrm{x}^{\prime \prime}+\mathrm{kxx}^{\prime}+0=0 \quad \forall \mathrm{t} \Rightarrow \mathrm{mx}^{\prime}\left(\mathrm{x}^{\prime \prime}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}\right)=0 \quad \forall \mathrm{t}
\end{aligned}
\] \\
The product of the two quantities is always nil. But mx' is not always nil, we get: \(x^{\prime \prime}+\frac{k}{m} x=0 \quad \forall t\)
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$

\hline 1-2 \& | $\begin{aligned} & x=x_{m} \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right) \Rightarrow \\ & x^{\prime}=-x_{m} \sqrt{\frac{k}{m}} \sin \left(\sqrt{\frac{k}{m}} t+\varphi\right) \Rightarrow x^{\prime \prime}=-\frac{k}{m} x_{m} \cos \left(\sqrt{\frac{k}{m}} t+\varphi\right)=-\frac{k}{m} x \end{aligned}$ |
| :--- |
| Replace x " by its expression in the differential equation: |
| The relation $-\frac{k}{m} x+\frac{k}{m} x=0$ is true. | \& $1 / 2$

$1 / 2$

\hline 1-3 \& | At $\mathrm{t}_{0}=0 \mathrm{~s} ; \mathrm{v}_{0}=\mathrm{x}^{\prime}{ }_{0}=-\mathrm{x}_{\mathrm{m}} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}} \sin \varphi=0 \Rightarrow \sin \varphi=0 \Rightarrow \varphi=0$ or $\varphi=\pi \mathrm{rd}$ |
| :--- |
| At $\mathrm{t}=0 \mathrm{~s} ; \mathrm{x}_{0}=\mathrm{x}_{\mathrm{m}} \cos \varphi>0$ |
| For $\varphi=0$ rd : $x_{0}=x_{m}=+3 \mathrm{~cm}$ (acceptable because $x_{m}>0$) |
| For $\varphi=\pi \mathrm{rd}: \mathrm{x}_{0}=-\mathrm{x}_{\mathrm{m}}=+3 \mathrm{~cm} \Rightarrow \mathrm{x}_{\mathrm{m}}=-3 \mathrm{~cm}$ (rejected because x_{m} is always positive) | \& $1 / 2$

$1 / 2$

\hline 2 \& $\mathrm{T}_{0}=2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}} \Rightarrow \mathrm{T}_{0}=2 \pi \sqrt{\frac{0.709}{7}}=2 \mathrm{~s}$ \& $$
\begin{aligned}
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$

\hline 3 \& | The curve A corresponds to PE_{e} because at $\mathrm{t}_{0}=0 \mathrm{~s}, \mathrm{x}_{0} \neq 0$ but $\mathrm{PE}_{\mathrm{e}}=\frac{1}{2} \mathrm{kx}^{2}$ so $\mathrm{PE}_{\mathrm{e}}(0) \neq 0 \mathrm{~J}$ |
| :--- |
| The curve B corresponds to ME because it has a constant value |
| The curve C corresponds to KE because at $\mathrm{t}=0 \mathrm{~s}, \mathrm{v}=0 \mathrm{~m} / \mathrm{s}$ but $\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$ so $\mathrm{KE}(0)=0 \mathrm{~J}$ | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 1 / 2 \\
& 1 / 2
\end{aligned}
$$
\]

\hline 4-1 \& From the graph we get: $\mathrm{T}=1 \mathrm{~s}$ \& $1 / 4$

\hline 4-2 \& $\mathrm{T}=\mathrm{T}_{0} / 2$ \& $1 / 4$

\hline
\end{tabular}

