I- (4points)

An employee deposits an amount of 10000000 LL in a bank at 9.6% annual interest rate, compounded monthly.
At the end of every month, he adds 200000 LL to the amount in his account.
Designate by S_{0} the initial amount deposited by this employee ($\mathrm{S}_{0}=10000000$), and by S_{n} the amount in his account at the end of the nth month.

1) Verify that $S_{1}=10280000$.
2) Justify that $S_{n+1}=1.008 S_{n}+200000$.
3) Consider the sequence $\left(U_{n}\right)$ defined by $U_{n}=S_{n}+25000000$.
a- Prove that the sequence $\left(\mathrm{U}_{\mathrm{n}}\right)$ is a geometric sequence of common ratio 1.008 .
b Express U_{n} in terms of n, and deduce S_{n} in terms of n.
c- In how many months would the amount of money in this employee's account exceed 40000000 LL for the first time?

II- (4 points).

A library has $\mathbf{1 0 0}$ calculators distributed according to type and year of manufacture as shown in the following table:

	Type P	Type G	Type O
Manufactured in 2007	20	15	25
Manufactured in 2006	10	12	18

A- A customer chooses at random one of these calculators.

1) Knowing that the chosen calculator was manufactured in 2007, show that the probability that it is of type G is equal to 0.25 .
2) What is the probability that the chosen calculator is of the type O and manufactured in 2007?
3) The prices of the calculators are given in the following table:

	Type P	Type G	Type O
Manufactured in 2007	100000 LL	80000 LL	60000 LL
Manufactured in 2006	50000 LL	40000 LL	30000 LL

What is the probability that the price of the chosen calculator does not exceed 70000 LL?
B- In this part, the customer chooses randomly and simultaneously two out of these $\mathbf{1 0 0}$ calculators.

1) What is the probability that the two chosen calculators are manufactured in 2007 ?
2) What is the probability that the price of the two chosen calculators is 180000 LL?

III - (4points)

The development in the number of monitors in a sports club during the last 6 years is as shown in the following table :

Year	2001	2002	2003	2004	2005	2006
Rank of the year: x_{i}	1	2	3	4	5	6
Number of monitors: y_{i}	15	20	25	28	30	32

1) Draw, in a rectangular system, the scatter plot of the points associated to the distribution ($\mathrm{x}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{i}}$).
2) Calculate the coordinates of the center of gravity G and plot this point in the preceding system.
3) Determine an equation of $D_{y / x}$, the regression line of y in terms of x, and draw this line in the same system.
4) Suppose that the above pattern remains valid till the year 2015.
a- Estimate the number of monitors in this club in the year 2010.
b- During which year would the number of monitors in this club exceed 50 for the first time?

IV- (8points).

Let f be the function defined, on $\left[0 ;+\infty\left[\right.\right.$, by : $\mathrm{f}(\mathrm{x})=\mathrm{x}+1+\mathrm{e}^{-\mathrm{x}+1}$ and designate by (C) its representative curve in an orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$.
A-1) a- Calculate $\lim _{x \rightarrow+\infty} f(x)$.
b- Prove that the line (d) of equation $\mathrm{y}=\mathrm{x}+1$ is an asymptote to (C).
2) Calculate $f^{\prime}(x)$ and set up the table of variations of f.
3) Draw (d) and (C).
4) Show that the equation $f(x)=4$ has a unique root α and verify that:
$2.84<\alpha<2.86$.
5) Calculate the area of the region bounded by the curve (C), its asymptote (d) and the two lines of equations $x=0$ and $x=1$.
B- In all what follows, let $\alpha=2.85$.
A factory produces x thousands of toys; ($1 \leq \mathrm{x} \leq 5$).
The cost of production, in millions of LL, is given by: $C(x)=x+1+e^{-x+1}$.

1) Calculate the cost of production of 2000 toys.

In this case, what is the cost of production of one toy?
2) Find the number of toys that should be produced for which the cost of production would be 4 million LL.

Q1	SHORT ANSWERS	MARKS
1	$\mathrm{~S}_{1}=10000000+10000000 \times \frac{0.096}{12}+200000=10280000$.	$1 / 2$
2	$\mathrm{~S}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}}+\mathrm{S}_{\mathrm{n}}(0.008)+200000=1.008 \mathrm{~S}_{\mathrm{n}}+200000$.	1
$3 . \mathrm{a}$	$\mathrm{U}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}+1}+25000000=1.008 \mathrm{~S}_{\mathrm{n}}+200000+25000000$ $=1.008 \mathrm{~S}_{\mathrm{n}}+25200000=1.008\left(\mathrm{~S}_{\mathrm{n}}+25000000\right)=1.008 \mathrm{U}_{\mathrm{n}}$ Thus $\left(\mathrm{U}_{\mathrm{n}}\right)$ is a geometric sequence of common ratio 1.008.	2
$3 . \mathrm{b}$	$\mathrm{U}_{\mathrm{n}}=\mathrm{U}_{0}(1.008)^{\mathrm{n}}$ where $\mathrm{U}_{0}=\mathrm{S}_{\mathrm{n}}+25000000=35000000$ $\mathrm{U}_{\mathrm{n}}=3500000(1.008)^{\mathrm{n}}$ and $\mathrm{S}_{\mathrm{n}}=35000000(1.008)^{\mathrm{n}}-25000000$.	$11 / 2$
3.c	$\mathrm{S}_{\mathrm{n}}>40000000 ; 35000000(1.008)^{\mathrm{n}}-25000000>40000000$ $(1.008)^{\mathrm{n}}>\frac{65}{35} ; \quad \mathrm{n}>\frac{\ln \left(\frac{13}{7}\right)}{\ln (1.008)} ; \mathrm{n}>77.689$ In 78 months the amount exceeds 40000000 LL.	2

Q2	SHORT ANSWERS	MARKS
A1	Let A be the event : "the chosen calculator was manufactured in 2007" $\mathrm{P}(\mathrm{G} / \mathrm{A})=\frac{15}{60}=0.25$.	1
A2	$\mathrm{P}(\mathrm{O} \cap \mathrm{A})=\frac{25}{100}=0.25$.	1
A3	$\mathrm{P}($ price $<70000)=\mathrm{P}(50000)+\mathrm{P}(40000)+\mathrm{P}(60000)+\mathrm{P}(30000)$ $=\frac{10+12+18+25}{100}=\frac{65}{100}=0.65$.	$\mathrm{P}(2$ calculators manufactured in 2007$)=\frac{\mathrm{C}_{60}^{2}}{\mathrm{C}_{100}^{2}}$ B1
B2	$\mathrm{P}(100000$ and 80000$)=\frac{\mathrm{C}_{20}^{1} \times \mathrm{C}_{15}^{1}}{4950}=0.357$. C_{100}^{2}	
$=\frac{20 \times 15}{4950}=\frac{300}{4950}=0.06$.	2	

Q4	SHORT ANSWERS	MARKS
A1a	$\lim _{x \rightarrow+\infty} f(x)=+\infty+0=+\infty$	$1 / 2$
A1b	$\lim _{x \rightarrow+\infty}[f(x)-(x+1)]=\lim _{x \rightarrow+\infty} e^{-x+1}=0$	1
A2	$\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{x})=1-\mathrm{e}^{-\mathrm{x}+1} \\ & \mathrm{f}^{\prime}(\mathrm{x}) \geq 0 \text { for } 1 \geq \mathrm{e}^{-\mathrm{x}+1}, \quad 0 \geq-\mathrm{x}+1, \quad \mathrm{x} \geq 1 . \end{aligned}$x 0 1 $+\infty$ $\mathrm{f}^{\prime}(\mathrm{x})$ - 0 + $\mathrm{f}(\mathrm{x})$ $1+\mathrm{e}$ 	2

A3		2
A4	The line of equation $y=4$ cuts (C) in a unique point of abscissa α, so the equation $\mathrm{f}(\mathrm{x})=4$ has a unique root α. $\begin{aligned} & \mathrm{f}(2.84)=3.99<4 ; \\ & \mathrm{f}(2.86)=4.01>4, \end{aligned}$ $\text { thus } 3.99<\alpha<4.01 \text {. }$	2
A5	$\begin{aligned} A & =\int_{0}^{1} e^{-x+1} d x=-\left[e^{-x+1}\right]_{0}^{1} \\ & =-(1-e)=(e-1) u^{2} \end{aligned}$	2
B1	$\mathrm{C}(2)=3+\mathrm{e}^{-1}=3.367$ meaning 3367000 LL The cost of production of a toy is : $\frac{3367000}{2000}=1683.5 \mathrm{LL}$.	$21 / 2$
B2	$C(x)=4$ for $x=\alpha$ meaning 2850 toys.	2

