المادة: الفيزياء الشهادة: المتوسطة

نموذج رقم 3 المدّة: ساعة واحدة

# الهيئة الأكاديمية المشتركة قسم: العلوم



نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

This test includes four mandatory exercises in two pages.

The use of non-programmable calculators is allowed.

#### **Exercise 1 (3 points)** Pressure

For the following statements, indicate whether each is true or false. For the false ones, write the correct statements.

- 1) Pressure is expressed in N in SI units.
- 2) The pressure is inversely proportional to the magnitude of the pressing force.
- 3) Liquids transmit wholly the pressure to which they are subjected.

### Exercise 2 (6 points) Image given by a converging lens

The aim of this exercise is to determine the characteristics of the image A'B', of an object AB, given by a converging lens (L).

The diagram (Doc 1) below represents the converging lens (L), its optical axis x'Ox, the object focus F, the image focus F' and the object AB.



- 1) Construction of the image A'B'
  - **1-1**) Reproduce the above diagram (Doc 1) on the graph paper using the same scale.
  - **1-2**) Construct the image A'B' and give the necessary explanations.
- 2) Characteristics of the image A'B'
  - **2-1**) Specify the nature of the image A'B'.
  - **2-2**) Indicate if the image A'B' is erect or inverted with respect to the object AB.
  - **2-3**) Give the size of the image A'B'.
  - **2-4**) Determine the distance d separating the image A'B' from (L).

## Exercise 3 (5 points) Egg in salty water

In an experiment, we use an egg of mass m = 55 g and a graduated cylinder containing 200 cm<sup>3</sup> of salty water of density  $\rho_{salty} = 1200 \text{ kg/m}^3$ .

Take: g = 10 N/kg.

We immerge the egg completely in the salty water. The level of the salty water rises till 250 cm<sup>3</sup> as shown in the adjacent document (Doc 2).

- 1) Calculate the magnitude W of the weight of the egg.
- 2) Calculate the volume of the egg.
- 3) Calculate the magnitude F of the Archimedes' upthrust exerted by the salty water on the egg (the egg being completely immersed in the salty water).
- 4) We release the egg. Specify whether the egg rises to the surface of the salty water or falls to the bottom of the cylinder.



## **Exercise 4 (6 points) Protection of a lamp**

The adjacent document (Doc 3) represents a circuit formed of:

- A battery supplying, across its terminals, a constant voltage  $U_{PN} = 12 \text{ V}$ ;
- A fuse that can support a maximum current of 0.6 A;
- A closed switch K;
- A rheostat (R<sub>h</sub>) of adjustable resistance;
- A lamp (L) acting as a resistor and carrying the label (9V; 4.5 W).
- 1) The lamp functions normally.
  - 1-1) Indicate the significance of the label (9 V; 4.5 W).
  - **1-2)** Deduce the value of the current I carried by the lamp (L).
  - **1-3**) Calculate the resistance R of the lamp (L).
- 2) Starting from a certain value, we decrease the resistance of the rheostat. The brightness of the lamp increases gradually. Calculate, just before the fuse melts:
  - **2-1**) The voltage  $U_{CD}$  across the lamp (L);
  - **2-2)** The voltage  $U_{BC}$  across the rheostat knowing that the voltage across the fuse is nil;  $U_{PA}=0$ .



المادة: الفيزياء الشهادة: المتوسطة

الهيئة الأكاديمية المشتركة قسم: العلوم



نموذج رقم 3 المدّة: ساعة واحدة

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي 2016-2017 وحتى صدور المناهج المطوّرة)

Exercise 1 (3 points) **Pressure** 

| Question | Answer                                                                          | Mark |
|----------|---------------------------------------------------------------------------------|------|
| 1        | False.                                                                          | 1/4  |
|          | Pressure is expressed in Pa in SI units.                                        | 3/4  |
|          | or                                                                              |      |
|          | False.                                                                          | 1/4  |
|          | Force is expressed in N in SI units.                                            | 3/4  |
| 2        | False.                                                                          | 1/4  |
|          | The pressure is proportional to the magnitude of the pressing force.            | 3/4  |
|          | or                                                                              |      |
|          | False.                                                                          | 1/4  |
|          | The pressure is inversely proportional to the area of the contact surface.      | 3/4  |
| 3        | False.                                                                          | 1/4  |
|          | Liquids transmit wholly the variations of pressure to which they are subjected. | 3/4  |

| Exercise 2 | 2 (6 poin                                                                                                                                          | ts)        | Ima         | age giv | en by a c | onverg | ging len | S     |                 |      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|---------|-----------|--------|----------|-------|-----------------|------|
| Question   |                                                                                                                                                    |            |             |         | Answer    |        |          |       |                 | Mark |
| 1-1        |                                                                                                                                                    | of propaga | tion (L)    |         | F'        |        | 1 cm     | 10 cm |                 | 1    |
|            | x' A                                                                                                                                               |            | 0           |         |           |        |          | x     |                 |      |
| 1-2        | x' A                                                                                                                                               | F          | <b>&gt;</b> | (L)     |           | F'     |          |       | 1 cm 10 cm A' X | 1    |
|            | From point B, we draw a ray that passes through point O. This ray emerges from point O of the lens without deviation.                              |            |             |         |           |        |          |       |                 | 1/2  |
|            | From point B, we draw an incident ray parallel to the optical axis. This ray emerges from the lens passing through point F'.                       |            |             |         |           |        |          |       |                 | 1/2  |
|            | Both emerging rays meet at point B'. From B', we draw a perpendicular line to the optical axis. This line intersects the optical axis at point A'. |            |             |         |           |        |          |       | 1/2             |      |

| 2-1 | A'B' is a real image                               | 1/2 |
|-----|----------------------------------------------------|-----|
|     | because it forms on the side of the emerging rays. | 1/2 |
| 2-2 | A'B' is inverted with respect to AB.               | 1/2 |
| 2-3 | A'B' = 1.5  cm.                                    | 1/2 |
| 2-4 | $d = 7.5 \times 10 = 75 \text{ cm}.$               | 1/2 |

Exercise 3 (5 points) Egg in salty water

| Question | Answer                                                                         | Mark |
|----------|--------------------------------------------------------------------------------|------|
| 1        | $W = m \times g$                                                               | 3/4  |
|          | $W = 55 \times 10^{-3} \times 10 = 0.55 \text{ N}$                             | 3/4  |
| 2        | $V = 250 - 200 = 50 \text{ cm}^3$                                              | 1/2  |
| 3        | $F = \rho \times V_{immersed} \times g$                                        | 3/4  |
|          | but $V_{immersed} = V$ since the egg is completely immersed in the salty water | 1/2  |
|          | then $F = \rho \times V \times g$                                              |      |
|          | $F = 1200 \times 50 \times 10^{-6} \times 10 = 0.6 \text{ N}$                  | 3/4  |
| 4        | W < F                                                                          | 1/2  |
|          | then the egg rises to the surface of the salty water.                          | 1/2  |
|          | (it will float on the surface of the salty water).                             |      |

**Exercise 4 (6 points) Protection in an electric circuit** 

| LACI CISC T | (o points) Trotection in an electric en cuit                                                     |      |
|-------------|--------------------------------------------------------------------------------------------------|------|
| Question    | Answer                                                                                           | Mark |
| 1-1         | 9 V: rated voltage.                                                                              | 1/4  |
|             | 4.5 W: rated power.                                                                              | 1/4  |
| 1-2         | P = UI                                                                                           | 1/2  |
|             | then $I = \frac{P}{U}$                                                                           |      |
|             | $I = \frac{4.5}{9} = 0.5 \text{ A}$                                                              | 1/2  |
| 1-3         | Using Ohm's law                                                                                  | 1/2  |
|             | U = RI                                                                                           |      |
|             | D U                                                                                              | 1/2  |
|             | $R = \frac{U}{I}$                                                                                |      |
|             | $R = \frac{9}{0.5} = 18\Omega$ Lust before the fuse melts, the value of the current is L = 0.6 A | 1/2  |
| 2-1         | Just before the fuse melts, the value of the current is $I_{max} = 0.6 \text{ A}$ .              |      |
|             | $U_{CD} = RI_{max}$                                                                              | 1/2  |
|             | $U_{CD} = 18 \times 0.6 = 10.8 \text{ V}.$                                                       | 1/2  |
| 2-2         | Using the law of addition of voltages:                                                           | 1/2  |
| 1           | $U_{PN} = U_{PA} + U_{AB} + U_{BC} + U_{CD} + U_{DN}$                                            | 1/2  |
|             | $U_{BC} = U_{PN} - U_{PA} - U_{AB} - U_{CD} - U_{DN}$                                            |      |
|             | $U_{DN} = 0$ since it is the voltage across a connecting wire.                                   |      |
|             | $U_{AB} = 0$ since it is the voltage across a closed switch (connecting wire).                   | 1/2  |
|             | $U_{BC} = 12 - 0 - 0 - 10.8 - 0$                                                                 |      |
|             | $U_{BC} = 1.2 \text{ V}$                                                                         | 1/2  |