المادة: الفيزيـاء الشهادة: المتوسطة $\text { نموذّة ساعة } 3 \text { واحدة }$	الهيئة الأكاديميّة المشتركة قسم: العلوم	

> نموذج مسابقة (يراعي تعليق اللاروس والتّوصيف المعدّل للعام الار اسي 2016-2017 وحتى صدور المناهج (المطوّرة)

This test includes four mandatory exercises in two pages.
The use of non-programmable calculators is allowed.

Exercise 1 (3 points)

Pressure
For the following statements, indicate whether each is true or false. For the false ones, write the correct statements.

1) Pressure is expressed in N in SI units.
2) The pressure is inversely proportional to the magnitude of the pressing force.
3) Liquids transmit wholly the pressure to which they are subjected.

Exercise 2 (6 points) Image given by a converging lens

The aim of this exercise is to determine the characteristics of the image $A^{\prime} \mathrm{B}^{\prime}$, of an object AB , given by a converging lens (L).
The diagram (Doc 1) below represents the converging lens (L), its optical axis x'Ox, the object focus F, the image focus F^{\prime} and the object AB .

1) Construction of the image $A^{\prime} \mathrm{B}^{\prime}$

1-1) Reproduce the above diagram (Doc 1) on the graph paper using the same scale.
1-2) Construct the image $A^{\prime} \mathrm{B}^{\prime}$ and give the necessary explanations.
2) Characteristics of the image $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

2-1) Specify the nature of the image $A^{\prime} B^{\prime}$.
2-2) Indicate if the image $A^{\prime} B^{\prime}$ is erect or inverted with respect to the object $A B$.
2-3) Give the size of the image $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$.
2-4) Determine the distance d separating the image $\mathrm{A}^{\prime} \mathrm{B}^{\prime}$ from (L).

Exercise 3 (5 points)

Egg in salty water

In an experiment, we use an egg of mass $\mathrm{m}=55 \mathrm{~g}$ and a graduated cylinder containing $200 \mathrm{~cm}^{3}$ of salty water of density $\rho_{\text {salty }}=1200 \mathrm{~kg} / \mathrm{m}^{3}$.
Take: $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.
We immerge the egg completely in the salty water. The level of the salty water rises till $250 \mathrm{~cm}^{3}$ as shown in the adjacent document (Doc 2).

1) Calculate the magnitude W of the weight of the egg.
2) Calculate the volume of the egg.
3) Calculate the magnitude F of the Archimedes' upthrust exerted by the salty water on the egg (the egg being completely immersed in the salty water).
4) We release the egg. Specify whether the egg rises to the surface of the salty water or falls to the bottom
 of the cylinder.

Exercise 4 (6 points) Protection of a lamp

The adjacent document (Doc 3) represents a circuit formed of:

- A battery supplying, across its terminals, a constant voltage $\mathrm{U}_{\mathrm{PN}}=12 \mathrm{~V}$;
- A fuse that can support a maximum current of 0.6 A ;
- A closed switch K;
- A rheostat $\left(\mathrm{R}_{\mathrm{h}}\right)$ of adjustable resistance;
- A lamp (L) acting as a resistor and carrying the label (9V; 4.5 W).

1) The lamp functions normally.

1-1) Indicate the significance of the label ($9 \mathrm{~V} ; 4.5 \mathrm{~W}$).
1-2) Deduce the value of the current I carried by the lamp (L).
1-3) Calculate the resistance R of the lamp (L).

2) Starting from a certain value, we decrease the resistance of the rheostat. The brightness of the lamp increases gradually.
Calculate, just before the fuse melts:
2-1) The voltage $U_{C D}$ across the lamp (L);
2-2) The voltage $U_{B C}$ across the rheostat knowing that the voltage across the fuse is nil; $U_{P A}=0$.

المادة: الفيزياء الثشهادة: المتوسطة $\text { نموذج رقم } 3$ المدّة: سـاعة واحدة	الهيئة الأكاديميّة المشتركة قسم: العلوم	

أسس التصحيح (تراعي تُعليق الدروس والتوصيف المعدّل للعام الار استي 2016-2017 وحتّى صدور المناهج المطوّرةّ)
Exercise 1 (3 points)
Pressure

Question	Answer	Mark
1	False.	$1 / 4$
	Pressure is expressed in Pa in SI units.	$3 / 4$
	or	$1 / 4$
	False.	$3 / 4$
	Force is expressed in N in SI units.	$1 / 4$
2	False.	$3 / 4$
	The pressure is proportional to the magnitude of the pressing force.	$1 / 4$
	or	$3 / 4$
	False.	The pressure is inversely proportional to the area of the contact surface.
	False.	$1 / 4$
	Liquids transmit wholly the variations of pressure to which they are subjected.	$3 / 4$

Exercise 2 (6 points) Image given by a converging lens

$2-1$	A'B' is a real image because it forms on the side of the emerging rays.	$1 / 2$ $1 / 2$
$2-2$	A'B' $^{\prime}$ is inverted with respect to AB.	$1 / 2$
$2-3$	A' $^{\prime}=1.5 \mathrm{~cm}$.	$1 / 2$
$2-4$	$\mathrm{~d}=7.5 \times 10=75 \mathrm{~cm}$.	$1 / 2$

Exercise 3 (5 points)

Egg in salty water

Question	Answer	Mark
1	$\begin{aligned} & \mathrm{W}=\mathrm{m} \times \mathrm{g} \\ & \mathrm{~W}=55 \times 10^{-3} \times 10=0.55 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 3 / 4 \end{aligned}$
2	$\mathrm{V}=250-200=50 \mathrm{~cm}^{3}$	1/2
3	$\begin{aligned} & \mathrm{F}=\rho \times \mathrm{V}_{\text {immersed }} \times \mathrm{g} \\ & \text { but } \mathrm{V}_{\text {immersed }}=\mathrm{V} \text { since the egg is completely immersed in the salty water } \\ & \text { then } \mathrm{F}=\rho \times \mathrm{V} \times \mathrm{g} \\ & \mathrm{~F}=1200 \times 50 \times 10^{-6} \times 10=0.6 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 3 / 4 \\ & 1 / 2 \\ & 3 / 4 \end{aligned}$
4	W < F then the egg rises to the surface of the salty water. (it will float on the surface of the salty water).	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$

Exercise 4 (6 points) Protection in an electric circuit

Question	Answer	Mark
1-1	9 V : rated voltage.	1/4
	4.5 W : rated power.	1/4
1-2	$\mathrm{P}=\mathrm{UI}$	1/2
	then $\mathrm{I}=\frac{\mathrm{P}}{\mathrm{U}}$	
	$\mathrm{I}=\frac{4.5}{9}=0.5 \mathrm{~A}$	1/2
1-3	Using Ohm's law	1/2
	$\mathrm{U}=\mathrm{RI}$	
	R U	1/2
	I	
	$R=\frac{9}{05}=18 \Omega$	1/2
2-1	Just before the fuse melts, the value of the current is $\mathrm{I}_{\text {max }}=0.6 \mathrm{~A}$.	
	$\mathrm{U}_{\mathrm{CD}}=\mathrm{RI}_{\max }$	1/2
	$\mathrm{U}_{\mathrm{CD}}=18 \times 0.6=10.8 \mathrm{~V}$.	1/2
2-2	Using the law of addition of voltages:	
	$U_{P N}=U_{P A}+U_{A B}+U_{\text {BC }}+U_{C D}+U_{\text {DN }}$	1/2
	$\mathrm{U}_{\mathrm{BC}}=\mathrm{U}_{\mathrm{PN}}-\mathrm{U}_{\mathrm{PA}}-\mathrm{U}_{\mathrm{AB}}-\mathrm{U}_{\mathrm{CD}}-\mathrm{U}_{\mathrm{DN}}$	
	$\mathrm{U}_{\mathrm{DN}}=0$ since it is the voltage across a connecting wire.	
	$\mathrm{U}_{\mathrm{AB}}=0$ since it is the voltage across a closed switch (connecting wire).	1/2
	$\mathrm{U}_{\mathrm{BC}}=12-0-0-10.8-0$	
	$\mathrm{U}_{\mathrm{BC}}=1.2 \mathrm{~V}$	$1 / 2$

