المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -٢-المددة: أربع ساعات

الهيئة الأكاديمية المشتركة قسم: الرياضيات

نموذج مسابقة (يراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٧-٢٠١ وحتى صدور المناهج المطوّرة)

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (2 points)

Choose the true answer and justify.

Questions	Answers		
Questions	A	В	С
1) $\arccos\left(\sin\frac{18\pi}{5}\right) =$	$\frac{18\pi}{5}$	$\frac{9\pi}{10}$	$\frac{-13\pi}{5}$
2) If θ is an argument of Z , then the argument of $\frac{1-i}{(\overline{Z})^2}$ is	$2\theta - \frac{\pi}{4}$	$\frac{\pi}{4}$ – 2 θ	$2\theta + \frac{\pi}{4}$
3) $\lim_{x \to 1} \frac{\int_{x}^{x^2} \sqrt{1 + t^2} dt}{x^2 - 1}$	$\frac{\sqrt{2}}{2}$	$\sqrt{2}$	$2\sqrt{2}$
4) A solution of the differential equation $y'-xy=0$ is	$y = e^{x^2}$	$y = e^{\frac{x^2}{2}}$	$y = \frac{x^2}{2}$
$\int_{1}^{2} \frac{2x}{x^2 - 2x + 2} dx$	$ln2 + \frac{\pi}{2}$	$ln2 + \frac{\pi}{4}$	$2\ln 2 + \frac{\pi}{4}$

II- (2,5 points).

The space is referred to an orthonormal system $(O, \dot{i}, \dot{j}, \dot{k})$.

Consider the points : A (0; 0; 2), B (0; 4; 0) and C (2; 0; 0).

1)

- a) Verify that an equation of the plane (ABC) is 2x + y + 2z = 4.
- **b)** Determine the nature of the triangle ABC.
- 2) Consider (Δ), the altitude to [BC] in the triangle ABC, and let \vec{N} be the vecteur with coordinates (2,1,2).
 - a) Show that $\overrightarrow{N} \wedge \overrightarrow{BC}$ is a direction vector of (Δ) .
 - **b)** Determine a system of parametric equations for the line (Δ) .

3) Let (Δ') be the bissector the angle B in the triangle ABC.

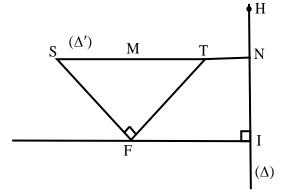
Show that the parametric equations of (Δ') are : $\begin{cases} x=t\\ y=4-4t & t\in\mathbb{R}\\ z=t \end{cases}$

- **4**) Let H be the point of intersection of the lines (Δ) and (Δ') .
 - a) Show that the point H is the orthogonal projection of the point O on the plane (ABC).
 - **b)** Deduce the volume of the tetrahedron OABC.

III- (2,5 points)

In the next figure:

- The triangle FIH is a right isosceles triangle at I.
- IF = IH = 3.
- N is a variable point on (HI).
- (Δ) is the parallel through N to (IF).
- T, M and S are three points on (Δ) so that NT = TM = MS.
- The triangle SFT is right angled at F.



Partie A

- 1) Show that M moves on an ellipse (E) with focus F, directrice (Δ) and excentricity $e = \frac{1}{2}$.
- 2) A is a point on [IF] so that IA = 2 and A' is the symmetric of I with respect to F.
 - a) Show that A et A' are two vertices of (E).
 - **b**) Determine the center O of (E) and Show that F is the midpoint of [OA]. Determine the second focus F'.
- 3) The circle with center F and radius OA intersects the non focal axis of (E) at B and B'. Show that B and B' are two vertices of (E).
- 4) Let L a point so that $\overrightarrow{FL} = \frac{1}{2}\overrightarrow{IH}$.
 - a) Show that L is a point on (E).
 - b) Calculate LF + LF'. Deduce LF'.

Partie B

The plane is referred to an orthonormal system (O; i, j) so that i = OF.

- 1) Write an equation of (E).
- 2) The line (LI) intersects the y- axis at G.
 - a) Show that (LI) is tangent to (E).
 - b) Calculate the area of the domain bounded by region inside of the triangle OGI and outside (E).
- 3) (C) is the hyperbola with center $J(\sqrt{3},0)$ and asymptotes (JB) and (JB') and having A one of its vertices.

Write an equation of (C).

IV- (3 points)

In the oriented plane, consider the right isosceles triangle ABC so that AB = AC = 4 cm and

 $(\overrightarrow{AB},\overrightarrow{AC}) = \frac{\pi}{2} + 2k\pi$ Denote by D the symmetric point of A with respect to B, O the midpoint of

[CD].and (T) the circle with diameter [CD].

Denote by S the similitude that maps D onto B and B onto C.

- 1) Determine the ratio k and the angle α of S.
- 2) Let I be the center of S and h the transformation defined by h = SoS.
 - a) Show that h(I) = I and h(D) = C.
 - **b)** Deduce that I is a point on a circle (T) and that IC = 2ID.
 - c) Show that ID = 4.
 - **d**) Deduce that I is the 4th vertex of a rectangle and plot I.
- 3) Consider the orthonormal system (A, \overrightarrow{U} , \overrightarrow{V}), so that $\overrightarrow{U} = \frac{1}{4}\overrightarrow{AB}$, $\overrightarrow{V} = \frac{1}{4}\overrightarrow{AC}$.

Determine the complex form of S.

4) For all $n \in N$ consider the sequence of points (Dn) defined by

 $D_0 = D$ and $D_{n+1} = S(D_n)$.

 (U_n) is the sequence defined by U_n = Area of the triangle I D_nD_{n+1}

- a) Calculate U_n in terms of n.
- b) Calculate in terms of n, the product $P=U_0 xU_1x....xU_n$.

V- (3 points)

y is a real number belongs to the interval [0; 80].

A box U contains 100 small wooden cubes out of which 60 are blue and the others are red.

- The blue cubes 40 % are labeled by a circle, 20 % are labeled by a rhombus and the others are labeled by a star.
- The red cubes 20 % are labeled by a circle, y % are labeled by a rhombus and the others are labeled by a star.

Part A: experiment 1.

One cube is selected randomly from the box U.

- 1) Show that the probability of selecting one cube labeled by a rhomb is equal to 0.12 + 0.004y.
- 2) Determine y so that the probability of selecting a cube labeled by a rhombus and the probability of selecting a cube that is labeled by a star are the same.
- 3) Determine y so that the events « select one blue cube» and « select one cube labeled by a rhombus » are independent.

Part B: experiment 2

In this part we select randomly one cube of the box U.

If the cube is blue, we place back it in U and we select another.

Otherwise, we put it aside, we select simultaneously 2 other cubes from the box.

- 1) Calculate the probability of selecting only one red cube.
- 2) Calculate the probability so that the selected cubes have the same color.

VI- (7 points)

Part A

- 1) Let f be the function defined , over $]0; +\infty[$, as $f(x) = \frac{1+2\ln x}{x^2}$ and (C) its representative curve. h is the function defined , over $]0; +\infty[$, as $h(x) = \frac{1}{x}$ and (C') its representative curve.
 - a) Show that the line with equation x = 0 is a vertical asymptote to (C).

- **b)** Calculate $\lim_{x\to +\infty} f(x)$. Deduce that the x-axis is a horizontal asymptote to (C).
- c) Set up the table of variations of f over $]0;+\infty[$.
- 2) Let g be the function defined over $]0; +\infty[$ as $g(x) = 1-x+2\ln(x)$.
 - a) Discuss the variations of g over $]0;+\infty[$
 - **b)** Show that the equation g(x) = 0 has 2 roots α and β so that $3.51 < \alpha < 3.52$.
 - c) Prove that $f(x) h(x) = \frac{g(x)}{x^2}$.
 - **d)** Deduce the relative position of (C) and (C').
 - e) Plot (C) and (C').
- 3) a) Calculate the derivative of $d(x) = \frac{1 + \ln(x)}{x}$. Deduce the antiderivative F(x) of f verifying that F(1) = -3.
- **b)** Show that $F(\alpha) F(1) = 2 \frac{2}{\alpha}$, Give a geometric interpretation to the result.

Part B

For all $n \ge 1$ Denote by (I_n) the sequence defined by $I_n = F(n+1) - F(n)$

- 1) Prove that $I_1 + I_2 < 2 \frac{2}{\alpha}$.
- 2) Calculate $Sn = I_1 + \dots + I_n$ in terms of n and calculate its limit.

المادة: الرياضيات الشهادة: الثانوية العامة الفرع: العلوم العامة نموذج رقم -٢-المدّة: أربع ساعات

الهيئة الأكاديمية المشتركة قسم: الرياضيات

أسس التصحيح (تراعي تعليق الدروس والتوصيف المعدّل للعام الدراسي ٢٠١٠-٢٠١٧ وحتى صدور المناهج المطوّرة)

	Answers key.	
Q1		Note
1	B: $\arcsin\frac{18\pi}{5}$ = $\arccos\left(\cos\frac{9\pi}{10}\right) = \frac{9\pi}{10}$.	0,25
2	A: $\arg \frac{1-i}{(z)^2} = \frac{-\pi}{4} + 2\theta$.	0,25
3	B:Hospital rule $\lim_{x \to 1} \frac{\sqrt{1 + x^4}.2x}{2x} = \sqrt{2}$	0,5
4	B: $\frac{y'}{y} = x$, then $\int \frac{y'}{y} = \int x$, then $\ln y = \frac{x^2}{2} + c'$, then $y = ce^{\frac{x^2}{2}}$ or verification	0,5
5	$A: \int_{1}^{2} \frac{2x-2}{x^{2}-2x+2} dx + \int_{1}^{2} \frac{2}{x^{2}-2x+2} dx = \left[\ln\left(x^{2}-2x+2\right)\right]_{1}^{2} + 2\left[\arctan\left(x-1\right)\right]_{1}^{2} = \ln 2 + \frac{\pi}{2}$	0,5

Q2		Note
1.a	$2x_A + y_A + 2z_A = 4 \text{ et } 2x_B + y_B + 2z_B = 4 \text{ et } 2x_C + y_C + 2z_C = 4$ $Or \det(\overrightarrow{AM}, \overrightarrow{AB}, \overrightarrow{AC}) = 0$	0,25
1.b	$AB=BC=\sqrt{20}$	0,25
2.a	\overrightarrow{N} is a normal vector to the plane (ABC) $\overrightarrow{N} \wedge \overrightarrow{BC}$ is a direction vector to (Δ) . Since (Δ) is orthogonal to \overrightarrow{n} and (BC).	0,25
2.b	(Δ) is an altitude through A; then its parametric equations : $\begin{cases} x = 4m \\ y = 2m \\ z = -5m + 2 \end{cases}$	0,5
3	$(\Delta') = (BI)$ so that I is the midpoint of [AC].	0,25
4.a	$H \in \Delta'$ for $t = \frac{8}{9}$ and $H \in \Delta$ for $m = \frac{2}{9}$ and H is the orthocenter of ABC. The coordinates of the point H are $\left(\frac{8}{9}; \frac{4}{9}; \frac{8}{9}\right)$. $\overrightarrow{OH} = \frac{4}{9}\overrightarrow{n}$	0,5
4.b	Area of the triangle ABC= 6 and OH = $\frac{4}{3}$ The volume of the tetrahedron = $\frac{8}{3}$	0,25

	G N N N N N N N N N N N N N N N N N N N	0,25
1	$\frac{MF}{MN} = \frac{1}{2}$, ([FM] is a mediane in the triangle STF equal half of ST. Then M moves on the ellipse with focus F and directrice (Δ) and excentricity $\frac{1}{2}$.	0,25
2.a	A is a point on the focal axis and $AF = \frac{1}{2}AI$ then A is a vertex on the ellipse. Same $A'F = \frac{1}{2}A'I$ then A'is the second vertex.	0,25
2.b	O is the midpoint of [AA'],OF=1 and OA=2 then F midpoint of [OA] and F' midpoint of [OA'].	0,25
3	Pythagorus .OB = $\sqrt{3}$ = b because b= $\sqrt{a^2 - c^2} = \sqrt{3}$.	0,25
4.a	$LF = \frac{1}{2}IF = \frac{1}{2}LH'$ so that H' orthogonal projection of L on (Δ). Then L is on the ellipse.	0,25
4.b	LF +LF'=2a=4 but LF=1,5 then LF'=2.5.	0,25
	$\frac{x^2}{4} + \frac{y^2}{3} = 1$	
1	The equation of the tangent (T) at the point $L(1,1.5)$ to (E) is $y=-0.5x+2$ that is the same of the line (IL).	0,25
2.a	Area of the domain = Area of triangle OIG - $\frac{\pi ab}{4}$	0,25
2.b	(JB) is perpendicular to (JB') then the hyperbola is rectangular so that $a=2-\sqrt{3}$ Its equation is $(x-\sqrt{3})^2-(y)^2=(2-\sqrt{3})^2$	0,25

Note

Q3

Q4		Note
1	$\frac{BC}{DB} = \frac{4\sqrt{2}}{4} = \sqrt{2} = k \text{ and } \left(\overrightarrow{DB}, \overrightarrow{BC}\right) = -\frac{\pi}{4} + 2k\pi.$	0,25
2.a	$h(I) = SoS(I) = S(I) = I \text{ and } h(D) = SoS(D) = S(B) = C \text{ and } \alpha + \alpha = -\frac{\pi}{2}; k \times k = 2, \text{ then h is}$ a similitude with ratio 2 and angle $-\frac{\pi}{2}$.	0,25
2.b	$(\overrightarrow{ID}, \overrightarrow{IC}) = -\frac{\pi}{2} + 2k\pi$, then $I \in \text{to the circle (T) with diameter [CD]}$. IC = 2ID.	0,25
2.c	$CD^2 = 5 ID^2$; then $ID = 4$.	0,25
2.d	It is a parallelogram with an angle of 90 degree then it is a rectangle.	0,25
3	z' = (1-i)z - 4 + 8i.	0,5

4.a	$\frac{\text{Un} + 1}{\text{Un}} = 2$ then the sequence is geometric with ratio 2 and the first term $U0 = 8$	0,75
4.b	$P=U_0 \times U_1 \times \times U_n = 8^{n+1} \cdot 2^{1+2++n} = 8^{n+1} \cdot 2^{\frac{n(n+1)}{2}}$	0,5

Q5		Note
	Part A	
1	$P(L) = P(L/R) \times P(R) + P(L/B) \times P(B) = \frac{y}{100} \times \frac{40}{100} + \frac{20}{100} \times \frac{60}{100} = 0.004y + 0.12$	0,5
2	$P(E) = P(E/B) \times P(B) + P(E/R) \times P(R) = \frac{80 - y}{100} \times \frac{40}{100} + \frac{40}{100} \times \frac{60}{100}$	0,5
	P(E) = P(L) then 0.008 y = 0.44, then y = 55.	
3	P(L/B) = P(L) = P(L/R), then y = 20.	0,5
Part B		
1	$P(R) = p(B)x p(R) + P(R)x P(BB) = \frac{6}{10}x \frac{4}{10} + \frac{4}{10}x \frac{C_{60}^2}{C_{99}^2}$	0,75
2	P(same color)= p(B)x p(B) +P(R)x P(RR)= $\frac{6}{10}$ x $\frac{6}{10}$ + $\frac{4}{10}$ x $\frac{C_{39}^2}{C_{99}^2}$	0,75

Q6		Note
	Part A	
1.a	$\lim_{x \to 0} f(x) = -\frac{\infty}{0} = -\infty, \text{ then } x = 0 \text{ A.V.}$	0,25
1.b	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} + \frac{1}{x^2} + \frac{2\ln x}{x^2} = 0 + 0 = 0 \text{ . then } y = 0 \text{ AH.}$	0,5
1.c	$f'(x) = \frac{-4x \ln x}{x^4}$ $\begin{array}{c cccc} x & 0 & 1 & +\infty \\ \hline f'(x) & + & 0 & - \\ \hline f(x) & & & 1 \end{array}$	0,5
2.a	$g'(x) \qquad + \qquad 0 \qquad -1 + 2\ln 2$ $g(x) = 1 - x + 2\ln(x)$	0,5
2.b	$g(1)=0,$ g is continuous with g(3.51) x g(3.52) < 0 ,then the equation g(x) = 0 has 2 roots α and 1 so that 3.51 < α < 3.52 .	0,25

2.c	$f(x) - h(x) = \frac{g(x)}{x^2}$	0,25
2.d	$\begin{array}{ c c c c c c }\hline x & 0 & 1 & \alpha & +\infty\\\hline f(x)-h(x) & - & 0 & + & 0 & -\\\hline position & (C') above & (C) & (C') below & (C) & (C') above & (C)\\\hline (C) et & (C') have 2 common points with abscissas 1 and α .$	0,5
2.e		0,75
3.a	d'(x)=-ln(x)/x ² then f(x) = $\frac{1}{x^2}$ -2 d'(x) then F(x)= $\frac{-1}{x}$ -2d(x) +K= $\frac{-3-2\ln x}{x}$ +K. but F(1)=-3 then k= 0 and therefore F(x)= $\frac{-3-2\ln x}{x}$.	0,75
3.b	$F(\alpha)-F(1) = \frac{-3-2\ln\alpha+3\alpha}{\alpha} \text{ but } g(\alpha)=0 \text{ then } -2\ln(\alpha)=1-\alpha \text{ and therefore}$ $F(\alpha)-F(1) = 2-\frac{2}{\alpha}.$ $2-\frac{2}{\alpha} = \text{Area of the domain bounded by (C), the x-axis and the two lines } x=1 \text{ and } x=\alpha$	0.75
	Part B	
3.a	$I_1 + I_2 = F(3) - F(1) = Area of the domain bounded by (C), the x-axis and the two lines x=1 and x=3 or 3 < \alpha then F(3) - F(1) < F(\alpha) - F(1) = Area of the domain bounded by (C), the x-axis and the two lines x=1 and x=\alpha.$	1
3.b	$Sn = I_1 + \dots + I_n = F(2) - F(1) + F(3) - F(2) + \dots + F(n+1) - F(n) =$ $= F(n+1) - F(1) = \frac{-3 - 2\ln(n+1)}{n+1} + 3.$ Lim Sn= 3 when $n \to +\infty$.	1