$\frac{\text { الدورة الإستثنـائية للعام }}{\text { ب. . } 1}$	امتحانـات الثشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربيةّ والتعليم العالـي المديرية العامـة للتربيـة دائرة الامتحانـات
الرقم: الاسم:	مسـابقة في مادة الفيزياء المدة ساعتان	

This exam is formed of three exercises in three pages. The Use of non-programmable calculators is allowed.

First exercise (7 points)

Mechanical oscillator

A spring of un-jointed loops, of stiffness constant $\mathrm{k}=10 \mathrm{~N} / \mathrm{m}$ and of horizontal axis, is fixed from one extremity to a fixed obstacle; the other extremity is attached to a puck M of mass $\mathrm{m}=100 \mathrm{~g}$. The center of inertia G of M can slide, without friction, along a horizontal axis $x^{\prime} x$ of origin O and unit vector \vec{i}. The horizontal plane passing through G is taken as a gravitational potential energy reference.

At the instant $t_{0}=0$, the puck M, initially at rest at O, is hit with another puck M^{\prime} of mass $m^{\prime}=\frac{m}{2}$ moving initially with a velocity $\overrightarrow{\mathrm{V}^{\prime}}=-\mathrm{V}^{\prime} \overrightarrow{\mathrm{i}}\left(\mathrm{V}^{\prime}>0\right)$. After collision, the puck M^{\prime} rebounds on M with a velocity $\overrightarrow{\mathrm{V}_{1}^{\prime}}$ and the puck M moves with a velocity $\overrightarrow{\mathrm{V}_{0}}=\mathrm{V}_{0} \overrightarrow{\mathrm{i}}$, and performs oscillations with a constant amplitude $X_{m}=10 \mathrm{~cm}$.

1) Give the sign of V_{0}.
2) Let x and v be respectively the algebraic values of the abscissa and the velocity of G at an instant t after the collision.
a) Write, in terms of $\mathrm{x}, \mathrm{m}, \mathrm{k}$ and v , the expression of the mechanical energy of the system (M, spring, Earth) at the instant t .
b) Derive the differential equation of second order in x that describes the motion of M .
c) The solution of this differential equation is of the form $x=A \sin \left(\omega_{0} t+\varphi\right)$.

Determine the values of the positive constants A, ω_{0} and φ.
d) Deduce that the magnitude of the velocity $\overrightarrow{\mathrm{V}_{0}}$ of M just after the collision is $1 \mathrm{~m} / \mathrm{s}$.
3) Knowing that the collision between M^{\prime} and M is supposed to be perfectly elastic, determine:
a) the value V^{\prime} of the velocity of M^{\prime} before collision;
b) the velocity $\overrightarrow{\mathrm{V}_{1}^{\prime}}$ of M^{\prime} just after the collision.

Second exercise (7 points)

Determination of the capacitance of a capacitor

In order to determine the capacitance C of a capacitor, we connect it in series with a resistor of resistance $\mathrm{R}=10 \sqrt{2} \Omega$ across the terminals of a low frequency generator (G) delivering across its terminals an alternating sinusoidal voltage $\mathrm{u}_{\mathrm{G}}=\mathrm{U}_{\mathrm{m}} \cos \omega \mathrm{t}$.
The circuit thus constructed carries an alternating sinusoidal current i (Fig1). Take $\sqrt{2}=1.4$ and $0.32 \pi=1$.

Figure 1

1) Redraw the circuit of figure (1) and show the connections of the oscilloscope in order to display the voltages $u_{G}=u_{A M}$ across the generator and $u_{R}=u_{D M}$ across the resistor.
2) Which of the two voltages, u_{G} or u_{R}, represents the image of the current i ? Justify your answer.
3) In figure 2 , the waveform (1) represents the variation of the voltage u_{G} with time.
a) Specify, with justification, which of the voltages u_{G} or u_{R}, leads the other.
b) Determine the phase difference between the voltages u_{G} and u_{R}.
4) Using the waveforms of figure 2, determine the angular frequency ω, the maximum value U_{m} of the voltage u_{G} and the maximum value I_{m} of the current i .
Horizontal sensitivity: $\mathbf{5 m s} /$ div.
Vertical sensitivity on both channels: 1 V/div.
5) a) Write down the expression of the
current i as a function of time t.
b) Deduce the expression of the voltage $u_{C}=u_{A D}$ across the
terminals of the capacitor as a function of C and t .
6) By applying the law of addition of voltages and giving the

Figure 2 time t a particular value, determine the value of C .

Third exercise (6 points)

Interference of light

Consider Young's experiment set-up that is formed of two very thin parallel slits F_{1} and F_{2}, separated by a distance $\mathrm{a}=1 \mathrm{~mm}$, and a screen of observation (E) placed parallel to the plane of the slits at a distance $D=2 \mathrm{~m}$ from the mid point I of $F_{1} F_{2}$ and a thin slit F, equidistant from F_{1} and F_{2}, situated on the straight line (Δ) whose intersection with (E) is the point O .
The object of this exercise is to study the interference pattern observed on the screen (E) in different situations.

A - First situation

The slit F is illuminated with a monochromatic light of wavelength $\lambda=0.64 \mu \mathrm{~m}$ in air.

1) Describe the interference pattern observed on (E).
2) Consider a point M on the screen at a distance d_{1} from F_{1} and d_{2} from F_{2}.

Specify the nature of the fringe thus formed at point M in each of the following cases:
a) $\mathrm{d}_{2}-\mathrm{d}_{1}=0$;
b) $\mathrm{d}_{2}-\mathrm{d}_{1}=1.28 \mu \mathrm{~m}$;
c) $\mathrm{d}_{2}-\mathrm{d}_{1}=0.96 \mu \mathrm{~m}$.
3) F is moved along (Δ). We observe that the interference fringes remain in their positions. Explain why.
4) F is moved perpendicularly to (Δ) to the side of F_{2}. We observe that the central fringe is displaced. In which direction and why?

B - Second situation

Now the slit F is illuminated with white light.

1) We observe at point O a white fringe. Justify.
2) Specify the color of the bright fringe that is the nearest to the central fringe.

C - Third situation

Consider two lamps $\left(\mathrm{L}_{1}\right)$ and $\left(\mathrm{L}_{2}\right)$ emitting radiations of same wavelength, we illuminate F_{1} by $\left(\mathrm{L}_{1}\right)$ and F_{2} by $\left(L_{2}\right)$, we observe that the system of interference fringes does not appear on the screen (E). Why?

(الاورة الإسنتثنائيةّ للعام	امتحاتات الثشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربيةّ والتتليم العاللي المديريـة العامـة للتربية دائرة الامتحانـات
الرقم:	مسابقة في مادة الفيزياء المدة ساعتان	مشروع معيار التصحيح

First exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
1	$\mathrm{V}_{0}<0$.	0.25
2.a	Mechanical energy: ME $=\mathrm{PE}+\mathrm{KE}=\frac{1}{2} \mathrm{k} \cdot \mathrm{x}^{2}+\frac{1}{2} \mathrm{~m} \cdot \mathrm{~V}^{2}$	0.50
2.b	Without friction \Leftrightarrow Conservation of mechanical energy $\Leftrightarrow \mathrm{ME}=\frac{1}{2} \mathrm{k} \cdot \mathrm{x}^{2}+\frac{1}{2} \mathrm{~m} \cdot \mathrm{~V}^{2}=$ constant. By deriving with respect to time: $\frac{\mathrm{dE}_{\mathrm{m}}}{\mathrm{dt}}=\mathrm{kx} \dot{\mathrm{x}}+\mathrm{mV} \dot{\mathrm{V}}=0$; $\Leftrightarrow \ddot{\mathrm{x}}+\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{x}=0$	1.00
2.c	$\mathrm{x}=\mathrm{A} \sin \left(\omega_{0} \mathrm{t}+\varphi\right) ; \dot{\mathrm{x}}=\mathrm{A} \omega_{0} \cos \left(\omega_{0} \mathrm{t}+\varphi\right)$ and $\ddot{\mathrm{x}}=-\mathrm{A} \omega_{0}^{2} \sin \left(\omega_{0} \mathrm{t}+\varphi\right)$ By replacing in the differential equation: $\begin{aligned} & A \omega_{0}^{2} \sin \left(\omega_{0} t+\varphi\right)+\frac{k}{m} A \sin \left(\omega_{0} t+\varphi\right)=0 \Leftrightarrow \omega_{0}^{2}=\frac{k}{m}=\frac{10}{0.1}=100, \\ & \omega_{0}=10 \mathrm{rd} / \mathrm{s} . \end{aligned}$ For $\mathrm{t}_{0}=0, \mathrm{x}=\mathrm{Asin}(\varphi)=0$, then $\varphi=0$ or π and $\mathrm{v}=\mathrm{A} \omega_{0} \cos (\varphi)=\mathrm{V}_{0}<$ 0 ; as $A>0$, then $\cos \varphi<0 \Rightarrow \varphi=\pi \mathrm{rad}$ and $\mathrm{A}=+10 \mathrm{~cm}$.	1.50
2.d	$\mathrm{v}=\dot{\mathrm{x}}=-\omega_{0} \mathrm{~A} \cos \left(\omega_{0} \mathrm{t}\right)$; at $\mathrm{t}_{0}=0, \mathrm{v}=\mathrm{V}_{0}=-\omega_{0} \mathrm{x}_{\mathrm{m}}=-1 \mathrm{~m} / \mathrm{s}$.	0.75
3	Conservation of linear momentum: $\Leftrightarrow \overrightarrow{\mathrm{P}}_{\mathrm{i}}=\overrightarrow{\mathrm{P}}_{\mathrm{f}} \Leftrightarrow \mathrm{m}^{\prime} \vec{V}^{\prime}=\mathrm{m}^{\prime} \vec{V}^{\prime}{ }_{1}+\mathrm{m} \overrightarrow{\mathrm{V}}_{0}$ In algebraic values: $\mathrm{V}^{\prime}=\mathrm{V}_{1}^{\prime}+2 \mathrm{~V}_{0}$. (I) Elastic collision \Leftrightarrow Conservation of KE: $\Leftrightarrow \frac{1}{2} m^{\prime} V^{\prime 2}=\frac{1}{2} m^{\prime} V_{1}^{\prime 2}+\frac{1}{2} m V_{0}^{2}$ $\Leftrightarrow m^{\prime}\left(\mathrm{V}^{\prime 2}-\mathrm{V}_{1}^{\prime 2}\right)=m V_{0}^{2}(\mathrm{II}) \Leftrightarrow \frac{(\mathrm{II})}{(\mathrm{I})} \Leftrightarrow \mathrm{V}^{\prime}+\mathrm{V}_{1}^{\prime}=\mathrm{V}_{0}$ Substituting in(I) we obtain: $\mathrm{V}^{\prime}=\frac{3}{2} \mathrm{~V}_{0}=1.5 \mathrm{~V}_{0}=-1.5 \mathrm{~m} / \mathrm{s}$.	2.00
4	$\begin{aligned} & \mathrm{V}_{1}^{\prime}=\mathrm{V}_{0}-\mathrm{V}^{\prime}=-1-(-1,5)=0.5 \mathrm{~m} / \mathrm{s} \\ & \overrightarrow{\mathrm{~V}_{1}^{\prime}}=0 ., 5 \overrightarrow{\mathrm{i}} \end{aligned}$	1.00

Second exercise (7 points)

Part of the Q		Answer
1		

Third exercise (6 points)

Part of the \mathbf{Q}	Answer	Mark
A. 1	- Fringes are parallel to the slits - Fringes are alternately bright and dark - Fringes are equidistant	0.75
A.2.a	$\mathrm{d}_{2}-\mathrm{d}_{1}=0=\mathrm{k} \lambda$ with $\mathrm{k}=0$; M is a bright central fringe.	0.5
A.2.b	$\mathrm{d}_{2}-\mathrm{d}_{1}=1.28 \mu \mathrm{~m}=\mathrm{k} \lambda$ with $\mathrm{k}=2 ; \mathrm{M}$ is a bright fringe of order 2.	0.75
A.2.c	$\mathrm{d}_{2}-\mathrm{d}_{1}=0.96 \mu \mathrm{~m}=(2 \mathrm{k}+1) \lambda / 2$ with $\mathrm{k}=1 ; \mathrm{M}$ is a dark fringe of order 1	0.75
A. 3	FF_{1} remains equal to FF_{2}, the optical path difference $\delta=\frac{\mathrm{ax}}{\mathrm{D}}$ does not vary thus the interfringe i does not vary.	0.75
A. 4	$\mathrm{FF}_{1}>\mathrm{FF}_{2}$; the optical path $\mathrm{FF}_{1} \mathrm{M}$ increases. To locate the central bright fringe O^{\prime}, we must have $\mathrm{FF}_{1} \mathrm{O}^{\prime}=\mathrm{FF}_{2} \mathrm{O}^{\prime}$, the optical path $\mathrm{F}_{2} \mathrm{O}^{\prime}$ must increase \Rightarrow the central fringe is displaced to the side of F_{1}.	1
B. 1	We see at O a white fringe since all the bright fringes corresponding to different colors superpose at O .	0.5
B. 2	$\mathrm{x}=\mathrm{k} \frac{\lambda \mathrm{D}}{\mathrm{a}}$; for $\mathrm{k}=1, \mathrm{x}$ is the smallest value corresponding to the smallest wavelength \Rightarrow we observe a violet bright fringe.	0.75
C	No, since the two sources are not coherent.	0.25

