مسابقة في مادة الكيمياء اللاء

This Exam Includes Three Exercises. It Is Inscribed on four Pages Numbered from 1 to 4. The Use of A Non-programmable Calculator Is Allowed. Answer the three Following Exercises:

First Exercise (7 points)
 Kinetic Study of the Decomposition Reaction of Dinitrogen Oxide

To ensure a suitable atmosphere in the space capsules, the decomposition of $\mathrm{N}_{2} \mathrm{O}$ gas is carried out according to a complete reaction of the following equation:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow 2 \mathrm{~N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

1- Study of the Reacting System

Introduce into an evacuated flask, maintained at $\theta=600^{\circ} \mathrm{C}, \mathrm{n}_{0} \mathrm{~mol}$ of $\mathrm{N}_{2} \mathrm{O}$.
1.1- \boldsymbol{x} represents the number of moles of oxygen gas formed at instant t . Copy the following table, on the answer sheet, and complete it in terms of n_{0} and \boldsymbol{x}.

Time	$\mathrm{N}_{2} \mathrm{O}(\mathrm{mol})$	$\mathrm{N}_{2}(\mathrm{~mol})$	$\mathrm{O}_{2}(\mathrm{~mol})$
0	n_{0}	0	0
t			
End of reaction			

1.2- Determine the pressure P in the flask at the end of the reaction knowing that the initial pressure is $\mathrm{P}_{0}=1.0 \times 10^{5} \mathrm{~Pa}$.

2- Kinetic Study of this Reaction

In order to study the kinetic of this slow reaction, the pressure P inside the flask is measured at different instants. The concentration of oxygen gas, $\left[\mathrm{O}_{2}\right]$, is determined based on the measurement of P at each instant t . The results are given in the following table:

$\mathrm{t}(\mathrm{min})$	0	12	25	45	70	100	130	160
$\left[\mathrm{O}_{2}\right]_{\mathrm{t}}\left(\mathrm{mol} \cdot \mathrm{m}^{-3}\right)$	0	0.88	1.68	2.68	3.72	4.56	5.12	5.40

2.1- Show that the concentration of O_{2} at instant $\mathrm{t},\left[\mathrm{O}_{2}\right]_{\mathrm{t}}$, is given by the relation:
$\left[\mathrm{O}_{2}\right]_{\mathrm{t}}=1.38 \times 10^{-4}\left(\mathrm{P}-\mathrm{P}_{0}\right)$.
Take: $\mathrm{R}=8.3$ Pa.m ${ }^{3} \cdot \mathrm{~mol}^{-1} . \mathrm{K}^{-1}$.
2.2- Plot, on a graph paper, the curve $\left[\mathrm{O}_{2}\right]=\mathrm{f}(\mathrm{t})$. Take the following scale: abscissa: 1 cm for 10 min and ordinate: 1 cm for $0.4 \mathrm{~mol} . \mathrm{m}^{-3}$.
2.3- Describe how to determine, graphically at instant t , the rate of this reaction.
2.4- Deduce the kinetic factor responsible for the change of this rate with time.
2.5- Determine graphically the half-life of this reaction.
2.6- The same study, in the same flask is done, at a temperature $\theta_{1}>\theta$.

Specify the effect of the elevation of temperature on:
2.6.1- The rate of the reaction.
2.6.2- The concentration of O_{2} gas,$\left[\mathrm{O}_{2}\right]_{\infty}$, at the end of the reaction.

Second Exercise (7 points) Aqueous Solution of Methylamine

The aim of this exercise is to study the acid-base behavior of methylamine in water.
Given: Kw is equal to 1.0×10^{-14} at $25^{\circ} \mathrm{C}$.

1- Methylamine in Water

The pH of a solution S of methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, of concentration $\mathrm{C}_{\mathrm{b}}=0.010 \mathrm{~mol} . \mathrm{L}^{-1}$ is measured and found to be equal to 11.3.
1.1- Write the equation of the reaction between methylamine and water.
1.2- Determine the transformation degree of methylamine in water.
1.3- Show that the pKa of the conjugate acid/base pair $\left(\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} / \mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ is equal to 10.7.

2- pH-metric Follow-up

A hydrochloric acid solution of concentration $C_{a}=0.020$ mol. L^{-1} is gradually added into a beaker containing a volume $\mathrm{V}_{\mathrm{b}}=40 \mathrm{~mL}$ of solution S of methylamine.
The equation of the reaction which takes place is as follows:

$$
\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

2.1- Determine the volume of the acid solution, V_{aE}, added to reach equivalence.
2.2- The pH of the solution obtained at equivalence is close to 6.1.

Justify the acid character of the solution obtained at equivalence, based on the species present.
2.3- By specifying its remarkable points, trace the shape of the curve representing the variation of pH of the content of the beaker versus the added volume V_{a} of the acid.
Take the following scale: abscissa: 1 cm for 2 mL and ordinate: 1 cm for 1 unit of pH .

3- Buffer Solution

Consider a buffer solution S_{1} where: $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]=\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]=2.0 \times 10^{-3} \mathrm{~mol} . \mathrm{L}^{-1}$.
3.1- Specify the pH of this solution.
3.2- Add to 1 L of solution S_{1}, without variation in volume:
3.2.1-1.0 $\times 10^{-3} \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$ions. Determine the pH_{1} of the obtained solution.
3.2.2- $4.0 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{H}_{3} \mathrm{O}^{+}$ions. The new value of pH is $\mathrm{pH}_{2}=2.7$.

Indicate in which case the solution S_{1} preserves its buffer properties.

Third Exercise (6 points)

Salicylic Acid
Salicylic acid is used in pharmaceutical and perfume industries.

Given:

- The structural formula of salicylic acid is:

- The primary raw material of the synthesis of salicylic acid is phenol of formula:

$-\mathrm{M}($ phenol $)=94 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ and $\mathrm{M}\left(\right.$ salicylic acid $\left.\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)=138 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.

1- Industrial Preparation of Salicylic Acid

This synthesis is carried out in three stages in which the third stage represents the reaction between sodium salicylate ($\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COO}^{-}$) solution and $\mathrm{H}_{3} \mathrm{O}^{+}$ions (produced by sulfuric acid).
1.1- Write the equation representing the third stage (assume that this reaction is complete).
1.2- Determine the mass of salicylic acid obtained starting with the total transformation of 800 kg of phenol if the percentage yield of all operations covering the three stages is 85%, knowing that one mole of phenol leads to the formation of one mole of salicylic acid.

2- Salicylic Acid in Cosmetic Industry

Salicylic acid can react with methanol to form an odorous ester called "essential oil of Wintergreen" which is used in perfume industry.
2.1- Write, using the structural formulas of the organic compounds, the equation of the reaction between salicylic acid and methanol.
2.2- Give two characteristics of this reaction.
2.3- A mixture of salicylic acid and an excess methanol is subject to reflux heating in the presence of few drops of concentrated sulfuric acid.
2.3.1- State the two kinetic factors involved in this experimental activity.
2.3.2- Specify the advantage of using an excess of methanol

3- Salicylic Acid in Pharmaceutical Industry

Given:

- Sodium bicarbonate $\left(\mathrm{Na}^{+}, \mathrm{HCO}_{3}^{-}\right)$is highly soluble in water.
$-\mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}\right)=14 ; \mathrm{pK}_{\mathrm{a}}\left(\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}\right)=0 ; \mathrm{pK}_{\mathrm{a}}\left(\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O} / \mathrm{HCO}_{3}^{-}\right)=6.4$.
- $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{HA}_{1} / \mathrm{A}_{1}^{-}\right)=3.5$ where HA_{1} represents acetylsalicylic acid.
- $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{HA}_{2} / \mathrm{A}_{2}^{-}\right)=3.1$ where HA_{2} represents citric acid considered as a monoacid.
- A gas is released from a solution only when this solution becomes saturated with it.

Salicylic acid is the essential chemical compound used in the synthesis of aspirin according to the chemical reaction of the following equation:

$$
\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \rightarrow \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}
$$

3.1- Write the structural formula of the two compounds: $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$ and $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$.
3.2- Circle and name the two functional goups in the structural formula of aspirin $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
3.3- Pharmaceutical industry presents aspirin under several formulations. The information concerning the formulation of a buffered effervescent aspirin is given as: acetylsalicylic acid; sodium bicarbonate; citric acid...
A tablet of this aspirin is introduced into a glass of water. A release of gas is observed as the tablet gradually disappears.
3.3.1- Represent on a vertical pK_{a} axis the conjugate acid/base pairs given before.
3.3.2- Write the equations of the two reactions responsible for the liberation of the gas when the bicarbonate is in an appropriate excess amount.
3.3.3- Justify the two terms "buffered" and "effervescent".

امتحانات الثههادة الثانوية العامة
الفرع: علوم الحياة

المديريـة العامـة للتربية
دائرة الامتّحانـات
مادة الكيمباء
التصحيح
مشروع مـيار

First Exercise (7 points)

	The rate of the reaction is equal to the value of this slope.	0.5
2.4	The observation of the curve shows that this value decreases when the time passes. This decrease in the rate is due to the decrease in the concentration of the reactant $\left(\mathrm{N}_{2} \mathrm{O}\right)$.	1
2.5	The half-life of the reaction is the time when the concentration of O_{2} will be equal to half of its concentration at the end of the reaction. $\left[\mathrm{O}_{2}\right]_{\mathrm{t} 1 / 2}=\frac{\left[\mathrm{O}_{2}\right]_{\text {to }}}{2}=\frac{1.38 \times 10^{-4}\left(1.50 \times 10^{5}-1.00 \times 10^{5}\right)}{2}=3.45 \mathrm{~mol} . \mathrm{m}^{-3}$ According to the graph, this concentration corresponds to : $\mathrm{t}_{1 / 2}=62$ min.	
2.6 .1	The increase in the temperature increases the reaction rate.	0.5
2.6 .2	$\left[\mathrm{O}_{2}\right]=\frac{\mathrm{n}\left(\mathrm{O}_{2}\right)}{\mathrm{V}}$. Knowing that $\mathrm{n}\left(\mathrm{O}_{2}\right)_{\mathrm{t} \infty}$ and V are constants whatever is the temperature so the final concentration of O_{2} does not vary with the temperature.	0.5

Second Exercise (7 points)

Part of the \mathbf{Q}	Answer	Mark
1.1	The equation of the reaction between methylamine and water is: $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{HO}^{-} .$	0.5
1.2	By definition: $\begin{aligned} & \alpha=\frac{\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) \text { transformed }}{\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) \text { initial }}=\frac{\mathrm{n}\left(\mathrm{HO}^{-}\right) \text {formed }}{\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right) \text { initial }}=\frac{\left[\mathrm{HO}^{-}\right]}{C_{b}}= \\ & \frac{10^{\mathrm{pH}-14}}{C_{b}}=\frac{10^{-2.7}}{0.01} \text {; from where } \alpha=10^{-0.7}=0.2 . \end{aligned}$	075
1.3	The acidity constant of this conjugate acid/base pair is: $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}\right]}=\frac{10^{-\mathrm{pH}} \times \mathrm{C}_{\mathrm{b}}(1-\alpha)}{\left[\mathrm{HO}^{-}\right]}=2 \times 10^{-11} ;$ Where: $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log 2 \times 10^{-11}=10.7$.	0.75
2.1	At equivalence, $\mathrm{n}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$added $=\mathrm{n}\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ introduced in the beaker $\mathrm{C}_{\mathrm{a}} \times \mathrm{V}_{\mathrm{aE}}=\mathrm{C}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}}$ Where: $\mathrm{V}_{\mathrm{aE}}=\frac{\mathrm{C}_{\mathrm{b}} \times \mathrm{V}_{\mathrm{b}}}{\mathrm{C}_{\mathrm{a}}}=\frac{0.01 \times 40}{0.02}=20 \mathrm{~mL}$.	0.75
2.2	At equivalence, the species present are: $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}, \mathrm{Cl}^{-}$and $\mathrm{H}_{2} \mathrm{O}$. Cl^{-}is a spectator species in water; $\mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$is a weak acid which reacts with water to make the medium acidic.	0.5
2.3	The remarkable points of this shape are: - pH initial $=11.3 ; \mathrm{V}_{\mathrm{aE}}=20 \mathrm{~mL}$ and $\mathrm{pH}_{\mathrm{E}}=6.1$; $-\mathrm{V}_{\mathrm{a}(1 / 2 \text { equivalence })}=10 \mathrm{~mL}$ and $\mathrm{pH}_{(1 / 2}$ equivalence $)=$ $\mathrm{pK}_{\mathrm{a}}\left(\mathrm{CH}_{3} \mathrm{NH}_{3}^{+} / \mathrm{CH}_{3} \mathrm{NH}_{2}\right)=10.7$ - The pH at which the curve tends is that of the added solution: $\mathrm{pH}=-\log \mathrm{C}_{\mathrm{a}}=1.7$ The shape of the curve will be as follows:	1.75

Third Exercise (6 points)

Part of the \mathbf{Q}	Answer	Mark
1.1	The equation of this reaction is: Or $\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} .$	0.5
1.2	$\begin{aligned} \mathrm{n}(\text { salicylic acid) formed }= & \mathrm{n}(\text { phenol }) \text { initial } \times \frac{85}{100} \\ \mathrm{~m}(\text { salicylic acid) formed }= & 0.85 \times \mathrm{m}(\text { phenol }) \times \frac{\mathrm{M}(\text { salicylic acid })}{\mathrm{M}(\text { phenol })} \\ & =0.85 \times 800 \times \frac{138}{94}=998.3 \mathrm{~kg} . \end{aligned}$	0.5
2.1	The equation of this reaction is: $\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \rightleftarrows \mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$	0.5
2.2	This reaction is athermic, slow, reversible.	0.5

2.3.1	The two kinetic factors which are involved in this activity are: The temperature and the catalyst represented by concentrated sulfuric acid.	0.5
2.3.2	The excess of methanol favors the formation of the ester so the yield of the reaction increases.	0.5
3.1	The condensed structural formula of compound $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}$ is: That of compound $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ is:	0.5
3.2		0.5
3.3.1	NaHCO_{3} completely ionized in water gives the ions: Na^{+}and HCO_{3}^{-}. The conjugate acid/base pairs placed on the pK_{a} axis:	0.5
3.3.2	The two equations of the two reactions responsible for the release of gas: $\begin{aligned} & \mathrm{HA}_{1}+\mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{A}_{1}^{-}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{HA}_{2}+\mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{A}_{2}^{-}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	1
3.3.3	The release of gas justify the term: "effervescent". Since HCO_{3}^{-}is in excess and the solution is saturated by CO_{2} gas; the mixture formed by acid CO_{2} dissolved an its conjugated base HCO_{3}^{-}, in the final solution, justify the term "buffered".	0.5

