دورة سنة \ . . . الإكمالية الإستثّأيّية	الثهادة المتوسطة	
الرقم: الاسم:	مسابقة في مادة الفيزياء المدة: ساعة واحدة	

This exam is formed of 3 obligatory exercises in 2 pages. The use of non-programmable calculators is allowed.

First exercise (7 points) Refraction of light

A luminous ray (SI), propagating in air, falls on the free surface of water at a point I (fig. 1) under an angle of incidence i. It then refracts along (IR) making an angle r with the normal (NN') at point I

1) Redraw figure 1 and represent on it: (NN '), (IR), i and r.
2) We vary i between 0 and 90°. The curve below (fig. 2) gives the variations of r as a function of i.

Figure 1

a) Determine graphically the value of r for $\mathrm{i}=0$. Deduce how does a luminous ray refract when it falls normally on the surface of water.
b) Determine graphically the value of i for $\mathrm{r}=15^{\circ}$ and the value of r for $\mathrm{i}=70^{\circ}$.
c) For $\mathrm{i}=90^{\circ}$, the angle of refraction is 49°. What does this angle represent for the system (water-air\}?
3) Another luminous ray (AJ) passes from water to air under an angle of incidence of 35°.
a) Determine graphically, by applying the principle of reversibility of light, the value of the angle of refraction corresponding to this incidence.
b) Draw a diagram showing the surface of separation \{water-air\}, the incident ray (AJ), the normal at the point of incidence J , the refracted ray (JB) as well as the angle of deviation d .
c) Calculate the value of d.

Second exercise (7 points)

Electric voltage

The two waveforms (I) and (II) represent the two electric voltages u_{AB} and u_{CD} respectively.
In the absence of any voltage, the horizontal line passes through the center of the screen of the oscilloscope. The vertical sensitivity on both channels is $\mathrm{S}_{\mathrm{V}}=5 \mathrm{~V} / \mathrm{div}$.

(I)

(II)

I- Exploitation of the waveform (I)

1) Give the type of the voltage $u_{A B}$ represented by waveform (I). Justify.
2) The value of this voltage is negative. Why?
3) Determine the value of $u_{A B}$.
4) Is the phase of the oscilloscope connected to the point A or to B ? Why ?
5) Give the name of a source of tension that may deliver such voltage.

II- Exploitation of the waveform (II)

1) Give the type of voltage $u_{C D}$ represented by the waveform (II).
2) Determine the maximum value of $u_{C D}$. Deduce the effective value of $u_{C D}$.

III- Feeding a lamp

Consider a lamp L labeled (12 V).

1) What does the indication 12 V represent for this lamp?
2) Upon feeding this lamp successively with the voltages $u_{A B}$ and $u_{C D}$.
a) (L) functions normally under the voltage $u_{A B}$. Why?
b) (L) does not function normally under the voltage $u_{C D}$. Why?

Third exercise (6 points) Pressure of a confined gas

The object of this exercise is to determine the pressure of a confined gas. For this we consider a glass bulb having a closed tap (R) and filled with a gas, a rubber tube connects the glass to a U tube manometer. This manometer contains water in equilibrium. The surfaces of water in the two branches are at the same level.

Given:

Atmospheric pressure: $\mathrm{P}_{\mathrm{atm}}=76 \mathrm{~cm}$ of mercury;
Density of mercury: $\rho_{1}=13600 \mathrm{~kg} / \mathrm{m}^{3 ;}$

Density of water: $\rho_{2}=1000 \mathrm{~kg} / \mathrm{m}^{3 ;}$
$\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.
We open the tap (R). We notice that at equilibrium, the difference in levels between the surfaces of water is 10 cm . (see the figure).

1) Determine, in pascal (Pa), the value of the pressure exerted by air at A .
2) Calculate the value of the pressure exerted by water at C.
3) Deduce the value of the total pressure at C.
4) a) B and C are under the same pressure. Why?
b) Deduce then the value of the pressure of the confined gas.

دورة سنة \ . . . الإكمالية الإستثّائية	الثهادة المتوسطة	
	مشروع معيار التصحيح مسابقة في مادة الفيزياء	

First exercise (7 points)

Part of the Q	Answer	Mark
$\mathbf{1}$	Redrawing (0.5) NN' $; \mathrm{IR} ; \mathrm{i} ; \mathrm{r}(1.5)$	$\mathbf{2}$
2)a)	$\mathrm{i}=0$ thus $\mathrm{r}=0(0.5)$ This ray continues its path without deviation. (0.5)	$\mathbf{1}$
2)b)	$\mathrm{r}=15^{\circ} \rightarrow \mathrm{i}=20^{\circ}(0.5)$ $\mathrm{i}=70^{\circ} \rightarrow \mathrm{r}=45^{\circ}(0.5)$	$\mathbf{1}$
2)c)	$\mathrm{r}=49^{\circ}$ represents the limiting angle of refraction (Critical angle)	$\mathbf{0 . 5}$
3) a)	$\mathrm{i}=35^{\circ} \rightarrow \mathrm{r}=50^{\circ}$	$\mathbf{0 . 5}$
3) b)	Diagram	$\mathbf{1}$
3) $\mathbf{c)}$	$\mathrm{d}=\mathrm{r}-\mathrm{i}=50^{\circ}-35^{\circ}=15^{\circ}$	$\mathbf{1}$

Second exercice (7 points)

Part of the \mathbf{Q}	Answer	Mark
I.1)	U_{AB} is a DC voltage Since U_{AB} is represented by a horizontal straight line	1
I.2)	Because the displacement of the horizontal line is downwards	0.5
I.3)	$\mathrm{U}_{\mathrm{AB}}=-2.4 \times 5=-12 \mathrm{~V}$	0.5
I.4)	The phase of the oscilloscop is connected to the terminal A (0.5) Since the oscilloscope measures U_{AB}	1
I.5)	an accumulator, a dry cell , D• C• generator	0.5
II.1)	Sinusoidal alternating	0.5
II.2)	$\begin{align*} \mathrm{U}_{\mathrm{m}} & =\mathrm{S}_{\mathrm{v}} \cdot \mathrm{y}_{\mathrm{m}}=5 \times 2.4=12 \mathrm{~V}(0.5) \\ \mathrm{U}_{\text {eff }} & =\mathrm{Um} / \sqrt{ } 2 \\ & =8.5 \mathrm{~V} \tag{0.5} \end{align*}$	1.5
III.1)	12 V is the rated voltage of the lamp	0.5
III.2)a)	U_{AB} is a constant voltage of value 12 V equal to the voltage of normal functioning of (L)	0.5
III.2)b)	Since the effective voltage of $\mathrm{U}_{\mathrm{CD}}(8.5 \mathrm{~V})$ is different from the rated voltage of the lamp	0.5

Third exercise (6 points)

Part of the \mathbf{Q}	Answer	Mark
1)	$\begin{align*} \mathrm{P}_{\mathrm{A}} & =\mathrm{P}_{\text {atm }}=\rho_{1} \cdot \mathrm{~g} . \mathrm{H} \tag{1}\\ & =13600 \times 10 \times 0.76=103360 \mathrm{P}_{\mathrm{a}} \tag{1} \end{align*}$	2
2)	$\mathrm{P}_{\text {water }}$ exerted by water $=\rho_{2}$. g.h $\quad=1000 \times 10 \times 0.1=1000 \mathrm{P}_{\mathrm{a}}$	1
3)	$\begin{aligned} \mathrm{P}_{\text {total }} & =\mathrm{P}_{\text {water }}+\mathrm{P}_{\text {atm }}(0.5) \\ & =104360 \mathrm{P}_{\mathrm{a}}(0.5) \end{aligned}$	1
4)a)	Since B and C are in the same horizontal plane and in the same liquid at equilibrium	1
4)b)	The pressure of the confined gas is the pressure at point $\mathrm{B} \quad$ or $\quad \mathrm{P}_{\text {gas }}=\mathrm{P}_{\mathrm{B}} \quad$ (0.5) Thus: $\mathrm{P}_{\mathrm{gas}}=104360 \mathrm{P}_{\mathrm{a}}$	1

