مسابقة في مـادة الفيزياء

This exam is formed of three obligatory exercises in two pages

Non-programmable calculators are allowed

First exercise ($\mathbf{6} \mathbf{~ p t s) ~ D e t e r m i n a t i o n ~ o f ~ t h e ~ f o c a l ~ l e n g t h ~ o f ~ a ~ c o n v e r g i n g ~ l e n s ~}$

The aim of this exercise is to determine, by geometrical construction, the focal length \mathbf{f} of a lens (L). The figure below represents, in real scale, a luminous object AB, its virtual image A'B' given by (L) and the optical axis x 'x of (L).

1) Nature of (L)

The lens L is a converging. Why?
2) Position of (L)
a) The optical center O of (L) is the intersection of the line BB^{\prime} with the optical axis x 'x. Why?
b) Redraw, on a graph paper and with a real scale, the above figure. Represent the lens (L) on this figure

3) Focal distance of (L)

a) A ray issued from B, parallel to the optical axis, meets the lens at a point I. Trace, with justification, the path of this ray.
b) The emergent ray meets the optical axis in a particular point. What does this point represent for the lens (L)?
c) Deduce the focal length of (L).

Second exercise (7 pts) Study of an electric circuit

During a laboratory session, we construct the circuit represented in the adjacent figure.

- G is a generator that maintains across its terminals a constant voltage $\mathrm{U}_{\mathrm{PN}}=12 \mathrm{~V}$.
- (A) is an ammeter of negligible resistance.
- $\quad\left(R_{1}\right)$ is a resistor of resistance $R_{1}=30 \Omega$.
- $\quad\left(R_{2}\right)$ is a resistor of resistance R_{2}.
- (K) is a switch.

When we close (K), the ammeter (A) indicates 0.6 A.

1) Determination of the value of $U_{B C}$
a) The voltage across (A) is zero. Why?
b) The voltage across (K) is zero. Why?
c) The voltage $U_{B C}$ is 12 V . Justify.
2) Determination of the value of \mathbf{R}_{2}
a) Determine the value of the current I_{1} through $\left(\mathrm{R}_{1}\right)$.
b) Deduce the value of the current I_{2} through (R_{2}).
c) Show that the value of R_{2} is 60Ω.

3) Equivalent resistance

The two resistors $\left(R_{1}\right)$ and $\left(R_{2}\right)$ can be replaced by a single resistor (R) of resistance R, so that (A) indicates the same value $\mathrm{I}=0.6 \mathrm{~A}$.
a) Out of the following values $(90 \Omega ; 50 \Omega ; 20 \Omega)$, which one matches the value of R ? Why?
b) An instrument allows a direct measurement of R. Name this instrument.

Third exercise ($7 \mathbf{p t s}$)

Pressing force

A vessel contains a quantity of water to a height $\mathrm{h}=30 \mathrm{~cm}$. At the bottom of the vessel, we place a sheet of metal of negligible thickness and of surface area $S=10 \mathrm{~cm}^{2}$. The vessel is placed on a horizontal table as shown in the adjacent figure. The water in the vessel is at rest.
Given:

- atmospheric pressure : $\mathrm{P}_{\mathrm{atm}}=75 \mathrm{~cm}$ of mercury ;
- density of mercury : $\rho_{\mathrm{Hg}}=13600 \mathrm{~kg} / \mathrm{m}^{3}$;
- density of water: $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$;
- $\quad \mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$.

1) Pressure at the surface of water

a) The free surface of water in the vessel is plane and horizontal. Why?
b) Calculate, in pascal, the value of pressure at the point A of this surface.
2) Pressure at the bottom of the vessel
a) Calculate the pressure exerted by water at a point B of the sheet of metal.
b) Deduce the value of the total pressure at the point B.

3) Representation of the pressing force

a) Calculate the value \mathbf{F} of the force $\overrightarrow{\mathrm{F}}$ exerted on the sheet of metal.
b) Give the line of action and the direction of the force \vec{F}.
c) Represent $\overrightarrow{\mathrm{F}}$ at the point B using the scale: $35 \mathrm{~N} \longleftrightarrow \mathbf{1 ~ c m ~}$

أسس تصحيح المسابقة في مادة الفيزياء

First exercise (6 pts)

1- (L) is a converging lens because it gives for the object, a virtual image larger than the object. (1 pt)
2- a) Because any luminous ray passing through the optical center continues its path without deviation (or because B, B ' and O are collinear).
b) Redraw ($1 / 2 \mathbf{p t}$); Representation of the lens L
(1 pt).
3- a) Trace (1 pt).
Justification: any ray issued from B emerges from the lens seeming to come out of B^{\prime} the image of B. (1/2 pt)
b) The image focus $\mathrm{F}^{\prime} \quad(1 / 2 \mathbf{p t})$
c) $\boldsymbol{f}=\mathrm{OF}^{\prime}(1 / 2 \mathrm{pt}) \quad \boldsymbol{f}=6 \mathrm{~cm}(1 / 2 \mathbf{p t})$

Second exercise: (7 pts)

1- a) $U_{(A)}=0$ because its resistance is negligible ($1 / 2 \mathbf{p t}$)
b) $U_{(K)}=0$ because (K) is closed (1/2 pt)
c) $\mathrm{U}_{\mathrm{BC}}=12 \mathrm{~V}$ because $\mathrm{U}_{\mathrm{PN}}=\mathrm{U}_{\mathrm{PB}}+\mathrm{U}_{\mathrm{BC}}+\mathrm{U}_{\mathrm{CN}}$ $\mathrm{U}_{\mathrm{PN}}=0+\mathrm{U}_{\mathrm{BC}}+0 \quad \mathrm{U}_{\mathrm{BC}}=\mathrm{U}_{\mathrm{PN}}$
(1pt)
or $\mathrm{U}_{\mathrm{BC}}=\mathrm{U}_{\mathrm{PN}}$ because $\mathrm{U}_{\mathrm{K}}=\mathrm{U}_{\mathrm{A}}=0$
2- a) $\mathrm{U}_{\mathrm{BC}}=\mathrm{R}_{1} \mathrm{I}_{1} \quad(1 / 2 \mathbf{p t}) \quad \mathrm{I}_{1}=\frac{\mathrm{U}_{\mathrm{BC}}}{\mathrm{R}_{1}}=\frac{12}{30}=0.4 \mathrm{~A} \quad$ (1pt)
b) $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \quad(1 / 2 \mathbf{p t}) \quad \mathrm{I}_{2}=\mathrm{I}-\mathrm{I}_{1}=0.6-0.4=0.2 \mathrm{~A} \quad(1 / 2 \mathbf{p t})$
c) $U_{B C}=R_{2} I_{2}(1 / 2 \mathbf{p t}) \quad R_{2}=\frac{12}{0.2}=60 \Omega(1 / 2 \mathbf{p t})$

3- a) $R=20 \Omega(1 / 2 \mathbf{p t})$
$\mathrm{U}_{\mathrm{BC}}=\mathrm{RI} \quad \mathrm{R}=\frac{12}{0.6}=20 \Omega(1 / 2 \mathbf{p t})$
or $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \Rightarrow \quad \mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=20 \Omega$
or because R is smaller than the smallest resistance.
b) Ohmmeter ($1 / 2 \mathbf{p t}$)

Third exercise: (7 pts)

1- a) Because all the points of the free surface of the liquid are under the same pressure. ($1 / 2 \mathbf{p t}$)
b) $\left.\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}(1 / 2 \mathbf{p t})\right) \mathrm{P}_{\mathrm{A}}=\rho_{\mathrm{Hg}} \mathrm{gh}(1 / 2 \mathbf{p t})$
$\mathrm{P}_{\mathrm{A}}=13600 \times 10 \times 0.75=102000 \mathrm{~Pa}(1 / 2 \mathbf{p t})$
2- a) $\mathrm{P}_{\text {water }}=\rho_{\text {water }} \mathrm{gh}(1 / 2 \mathbf{p t})$
$P_{\text {water }}=1000 \times 10 \times 0.3=3000 \mathrm{~Pa}(1 / 2 \mathbf{p t})$
b) $\mathrm{P}_{\mathrm{t}}=\mathrm{P}_{\text {water }}+\mathrm{P}_{\mathrm{atm}} \quad(1 / 2 \mathbf{p t ~))}$
$\mathrm{P}_{\mathrm{t}}=3000+102000=105000 \mathrm{~Pa}(1 / 2 \mathbf{p t})$
3- a) $P=\frac{F}{S}(1 / 2 \mathbf{p t}) \Rightarrow F=P S=105000 \times 0.001 \Rightarrow F=105 \mathrm{~N}(1 / 2 \mathbf{p t})$
b) Line of action: vertical ($1 / 2 \mathbf{p t}$)

Direction: downward (1/2 pt)
c) $35 \mathrm{~N} \longrightarrow 1 \mathrm{~cm}$
$105 \mathrm{~N} \longrightarrow 3 \mathrm{~cm}$
Vector ($\mathbf{1} \mathbf{p t}$)

