	مسابقة في قدام الرياضيات	
الاسم:	٠٠٠٠ عي ١٠٠٠ م	
•	المدة: ساعتان	عدد المسائل : ستة
ال قم.	المدة: المحال	حدد المسان ؛ سنه
- 22 21		

- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة.

I- (2 points)

Questions 1) and 2) of this exercise are independent.

1) Given the two numbers A and B defined by:

$$A = \frac{13}{7} - \frac{3}{7} \times \frac{14}{9}$$
, $B = 2\sqrt{36} + 5\sqrt{12} - 9\sqrt{75} + 4\sqrt{27}$.

Show all the steps of the following calculations:

- a) Calculate A and give the result in the form of an irreducible fraction.
- **b)** Write B in the form $a + b \sqrt{3}$ where a and b are two integers.
- 2) x is any acute angle, establish the following equalities:

 - **a)** $(1 + \tan^2 x) \cos^2 x = 1$. **b)** $(\cos x + \sin x)^2 2 \cos x \sin x = 1$.

II- (2points)

A statistical series is given in the opposite table where a, b, c and d are integers.

- 1) Calculate the numerical value of each of the numbers a, b, c and d.
- 2) Calculate the mean of this statistical series.

Values	5	7	8	12	Total
Frequencies	12	18	a	15	75
Relative frequencies in %	16	С	d	20	b

III- (2points)

In what follows, designate by x the price of a pen in L L and y the price of a copybook in L L. To buy one pen and one copybook we pay 2500 L L. If the price of a pen is decreased by 30% and the price of a copybook is decreased by 20% the amount we pay becomes 1900 L L.

- 1) Prove that the preceding information is translated into the following system : $\begin{cases} x + y = 2500 \\ 7x + 8y = 19000 \end{cases}$
- 2) Solve the preceding system, showing the followed steps in detail, and find the price of one pen and the price of one copybook.

IV- (3 points)

Part A

- 1) Verify the equality: $2(x-3)(x+7) = 2x^2 + 8x 42$. 2) Solve the equation : $2x^2 + 8x 42 = 0$.

Part B

In this part, the unit of length is the centimeter.

ABC is a triangle such that AB = x, AC = x + 4 and BC = $\sqrt{58}$, where x is an integer strictly greater than 1.

- 1) Can we find a value for x such that triangle ABC is right angled at C? Justify.
- 2) Calculate x so that triangle ABC is right angled at A. (You can use the results of **part A**).
- 3) Calculate x so that the perimeter of triangle ABC is less than or equal 18. (In this question, you can consider 7.6 as an approximate value of $\sqrt{58}$).

V- (5 points)

Consider a circle (C) of center O and diameter [AB] such that AB = 6 cm. E is a variable point of (C) and M is the symmetric of A with respect to E.

The straight line (BM) cuts circle (C) in a second point P (see the figure below).

Designate by J the point of intersection of (BE) with (AP), T the point of intersection of (AB) with (MJ) and S the midpoint of [MB].

- 1) Draw a figure.
- 2) Prove that triangle ABE is right.
- **3) a)** Prove that triangle ABM is isosceles of principal vertex B.
 - **b)** On what line does S move when E describes the circle (C)?
- 4) Prove that triangle ABM is an enlargement of triangle OBS and precise the scale factor of this enlargement.
- **5) a)** Prove that (AT) is perpendicular to (MJ).
 - **b**) Prove that the points E, B, T and M belong to the same circle. Determine a diameter of this circle.

VI- (6 points)

In the plane of an orthonormal system x' O x, y' O y, where the unit of length is the centimeter, consider the straight line (d) of equation $y = -\frac{3}{2}x - 1$ and the points A(-4; 5), B(6; 3) and G(0, -1).

- 1) Plot the points A, B and G.
- 2) Verify by calculation, that A and G are two points of (d), then draw (d).
- 3) Write an equation of the straight line (BG) and deduce that the straight lines (d) and (BG) are perpendicular.
- 4) Knowing that $AG = 2\sqrt{13}$. Calculate BG and deduce that AGB is an isosceles right triangle.
- 5) Let (C) be the circle circumscribed about triangle ABG. Calculate the radius of (C) and the coordinates of its center J.
- 6) Designate by E the point defined by $\overrightarrow{GE} = \overrightarrow{GA} + \overrightarrow{GB}$.
 - a) Prove that AGBE is a square.
 - **b)** Calculate the coordinates of E.
 - c) Prove that E is a point of (C).

توزيع علامات مسابقة الرياضيات

	توزيع علامات مسابقة الرياضيات					
	1.a)	$A = \frac{13}{7} - \frac{2}{3} = \frac{25}{21}.$	1/2			
	1.b)	$B = 12 + 10\sqrt{3} - 45\sqrt{3} + 12\sqrt{3} = 12 - 23\sqrt{3}.$	1/2			
I	2.a)	$(1+\tan^2 x)\cos^2 x = \cos^2 x + \frac{\sin^2 x}{\cos^2 x}\cos^2 x = \cos^2 x + \sin^2 x = 1.$	1/2			
	2.b)	$(\cos x + \sin x)^2 - 2\cos x \sin x = \cos^2 x + \sin^2 x + 2\cos x \sin x - 2\cos x \sin x = 1.$	1/2			
	1	a = 30 ; $b = 100$; $c = 24$; $d = 40$.	1 1/4			
II	2	$\overline{x} = \frac{606}{75} = 8,08.$	3/4			
	1	x + y = 2500 $x + y = 2500$	1/4, 1/2,			
III		$\begin{cases} x + y = 2500 \\ 0.7x + 0.8y = 1900 \end{cases} $ then $\begin{cases} x + y = 2500 \\ 7x + 8y = 19000. \end{cases}$	1/4			
	2	x = 1000 and $y = 1500$	3/4			
		The price of one pen is 1000LL; The price of one copybook is 1500LL.	1/4			
	A.1)	$2(x-3)(x+7) = 2(x^2+4x-21) = 2x^2+8x-42$	1/2			
	A.2)	x = 3 ; $x = -7$	1/2			
	B.1)	No, because $x < x + 4$, so [AB] can not be a hypotenuse.	1/2			
IV		or: $x^2 = (x+4)^2 + 58$ gives $x = -\frac{74}{8}$. This value of x is rejected because x is negative.				
	B.2)	$BC^2 = AB^2 + AC^2$ so $2x^2 + 8x - 42 = 0$, then $x = 3$ or $x = -7$; -7 rejected.	3/4			
	B.3)	$x + x + 4 + 7,6 \le 18$; $x \le 3,2$ so $x = 2$ or $x = 3$.	3/4			
	1	Figure	1/4			
V		M S T				

				1/2
	2	[AB] is a diameter		
		E is a point of the circle so triangle AEB	is right at E.	
V	3.a)	In triangle ABM, [BE] is a median and a height so the triangle ABM is isosceles of principal vertex B.		
	3.b)	S moves on the circle of center B and radius $BS = 3cm$.		
	4	(OS) // (AM); $\frac{BM}{BS} = \frac{BA}{BO} = \frac{AM}{OS} = 2$ because; The scale factor is 2.		
	5.a)	In triangle AMJ, B is the orthocenter so (JE) is perpendicular to (AM).		
	5.b)	MEB and MTB are two right triangles of the same hypotenuse [BM]. So, they are inscribed in the circle of diameter [BM].		1
	1	A, B and G.		1/2
	2	$-\frac{3}{2}x_{A}-1=5=y_{A}$; A is a point of (d).		3/4
		$-\frac{3}{2}x_{G}-1=-1=y_{G}$; G is a point of (d).		
		Draw (d).		
	3	Equation of (BG): $y = \frac{2}{3}x - 1$	· · · · · · · · · · · · · · · · · · ·	3/4
		$a_{(BG)} \times a_{(d)} = -1; (BG) \perp \text{ to (d)}.$		1/4
	4	$BG = 2\sqrt{13}$		1/2
VI		$BG = AG$ and $(BG) \perp (AG)$ so AGB is a right isosceles triangle.		1/2
	5	$r = \frac{AB}{2} = \sqrt{26}$ because [AB] is a	B 1	1/2
		diameter of (C).	0 1	1/2
		J (1; 4) (J midpoint of [AB]).		, 2
	6.a)	$\overrightarrow{GE} = \overrightarrow{GA} + \overrightarrow{GB}$ so AGBE is a parallelogram.	· · · · · · · · · · · · · · · · · · ·	3/4
		AGB is an isosceles right triangle so AGBE is a square.		
	6.b)	E(2;9).		3/4
	6.c)	E is the 4 th vertex of the square; so E is a point of (C).		1/4