|  | امتحانـات الثشهادة الثانوية العامة الفرع : إجتماع و إقتصاد | وزارة التربية والتعليم العاللي المديريـة العامـة للتربية دائرة الامتحانـات |
| :---: | :---: | :---: |
| الرقم: الاسم: | مسابقة في مادة الرياضيات المدة ساعتان | عدد المسائل : اريع |

## I- (4 points)

The table below shows the blood pressure $y_{i}$, according to the weight $x_{i}$, of a group of women .

| Weight in kg <br> $\mathrm{x}_{\mathrm{i}}$ | 55 | 58 | 60 | 64 | 65 | 70 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Blood pressure <br> $\mathrm{y}_{\mathrm{i}}$ | 13.2 | 13.5 | 13.8 | 14.6 | 15.2 | 15.8 |

1) Calculate the averages $\bar{x}$ and $\bar{y}$ of the two statistical variables $x_{i}$ and $y_{i}$ respectively.
2) Represent graphically the scatter plot as well as the center of gravity $G(\bar{x} ; \bar{y})$ of the points ( $\mathrm{x}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{i}}$ ) in a rectangular system.
3) Write an equation of the regression line $D_{y / x}$ of $y$ in terms of $x$ and draw this line in the preceding system.
4) Suppose that the above pattern remains valid for weights of women between 45 and 75 kg , estimate the blood pressure of a woman weighing 72 kg .
5) Doctors assume that a normal blood pressure for a woman should belong to the interval [12;13]. Estimate a corresponding interval to which the weights of women having normal blood pressure should belong.

## II-(4 points)

A person rented an apartment at the beginning of the year 2000.
The annual rent in the year 2000 was 4000000 LL to be increased by $10 \%$ every year.
Let $U_{0}=4000000$ and designate by $U_{n}$ the annual rent in $L L$ in the year $(2000+n)$.

1) Calculate $U_{1}$ and $U_{2}$.
2) a- Prove that $\left(U_{n}\right)$ is a geometric sequence, and determine its common ratio.
b- Calculate $U_{n}$ in terms of $n$, and deduce $U_{n+1}$ in terms of $n$.
3) Let $S_{n}=U_{0}+U_{1}+\ldots \ldots .+U_{n}$.
a- Show that $1.1 \times S_{n}=U_{1}+U_{2}+\ldots . .+U_{n+1}$.
b- Deduce that $1.1 \times S_{n}=S_{n}+U_{n+1}-U_{0}$, and that $S_{n}=40000000\left[(1.1)^{n+1}-1\right]$.
4) This person rented the apartment for 6 consecutive years starting from the beginning of the year 2000 till the end of 2005.
Calculate the total sum of money paid by this person for renting this apartment during this period.

## III- (4 points)

The 40 students in the basketball club of a school are distributed as shown in the table below:

|  | Boys | Girls |
| :---: | :---: | :---: |
| $1^{\text {st }}$ secondary year | 8 | 6 |
| $2^{\text {nd }}$ secondary year | 7 | 4 |
| $3^{\text {rd }}$ secondary year | 8 | 7 |

A group of 3 students is chosen simultaneously and randomly from this club.

1) Consider the following events:

A: «The three chosen students are all in the $3^{\text {rd }}$ secondary year ».
B: «The three chosen students are all girls, each one from a different year».
C: «The three chosen students are all in the same secondary year ».
Verify that the probability $p(A)$ is equal to $\frac{7}{152}$ and calculate $p$ (B) and $p$ (C).
2) The chosen group is formed of three boys, what is the probability that they are all from the same secondary year?
3) In this part we choose randomly and successively three students from this club.
a- What is the probability that the first is in the $1^{\text {st }}$ year, the second is in the $2^{\text {nd }}$ year and the third is in the $3^{\text {rd }}$ year.
$b-$ What is the probability that at least one of them is in the $1^{\text {st }}$ year.

## IV- (8 points)

A- The curve (C) to the right is the graphical representation, in an orthonormal system, of the function $f$ defined over $[0 ;+\infty$ [ by $f(x)=a e^{x}+b$, where $a$ and $b$ are real numbers.
The curve (C) has at O a tangent ( T ) of equation $\mathrm{y}=\frac{\mathrm{x}}{8}$. Show that $\mathrm{f}(\mathrm{x})=\frac{\mathrm{e}^{\mathrm{x}}-1}{8}$.


B- Let g be the function defined over $\left[0 ;+\infty\left[\right.\right.$ by $g(x)=\frac{120}{\mathrm{e}^{\mathrm{x}}+15}$, and let $(G)$ be its representative curve.

1) Determine $\lim _{x \rightarrow+\infty} g(x)$ and deduce an asymptote to (G).
2) Show that $g^{\prime}(x)<0$, for every $x \geq 0$.
3) Set up the table of variations of $g$.
4) Copy (C) and draw (G) in the same orthonormal system .
5) Suppose that $f$ and $g$ are respectively the supply and the demand functions of a certain object, in terms of the unit price x . ( x is expressed in millions LL, $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ in hundreds of objects). a- Estimate the number of objects demanded when the unit price is 5000000 LL .
b- Show that the equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ has a unique solution $\alpha$ and verify that $\alpha=\ln (25)$.
c- Calculate $\mathrm{g}(\alpha)$ and give an economical interpretation for the values of $\alpha$ and $\mathrm{g}(\alpha)$.

| QI | Answer |  |  |  |  |  |  |  |  |  |  |  |  | Mark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\overline{\mathrm{x}}=62, \quad \overline{\mathrm{y}}=14.35$. ( calculator) |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  | 2 |
| 3 | $y=0.186 x+2.799$. (Calculator) |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 4 | For $\mathrm{x}=72 ; \mathrm{y}=0.186 \times 72+2.799=16.191$. So for a weight of 72 kg , the pressure is estimated to be 16.2 . |  |  |  |  |  |  |  |  |  |  |  |  | 1 |
| 5 | $12 \leq \mathrm{y} \leq 13$ is equivalent to $12 \leq 0.186 \mathrm{x}+2.799 \leq 13$ and $49.46 \leq \mathrm{x} \leq 54.84$. The weights of such women belong to the interval [49.5; 54.8]. |  |  |  |  |  |  |  |  |  |  |  |  | 2 |


| QII | Answer | Mark |
| :---: | :---: | :---: |
| 1 | $\begin{aligned} & \mathrm{U}_{1}=\mathrm{U}_{0}+0.1 \mathrm{U}_{0}=1.1 \mathrm{U}_{0}=1.1 \times 4000000=4400000 . \\ & \mathrm{U}_{2}=1.1 \mathrm{U}_{1}=1.1 \times 4400000=4840000 . \end{aligned}$ | 1 |
| 2a | $\mathrm{U}_{\mathrm{n}+1}=\mathrm{U}_{\mathrm{n}}+0.1 \mathrm{U}_{\mathrm{n}}=1.1 \mathrm{U}_{\mathrm{n}} .$ <br> Thus $\left(U_{n}\right)$ is a geometric sequence, common ratio is $q=1.1$, first term is $\mathrm{U}_{0}=4000000$. | 1 |
| 2b | $\mathrm{U}_{\mathrm{n}}=\mathrm{U}_{0} \mathrm{q}^{\mathrm{n}}=4000000(1.1)^{\mathrm{n}} ; \quad \mathrm{U}_{\mathrm{n}+1}=\mathrm{U}_{0} \mathrm{q}^{\mathrm{n}+1}=4000000(1.1)^{\mathrm{n}+1}$. | 1 |
| 3a | $\begin{aligned} \mathrm{S}_{\mathrm{n}}= & \mathrm{U}_{0}+\mathrm{U}_{1}+\mathrm{U}_{2}+\ldots+\mathrm{U}_{\mathrm{n}} . \\ 1.1 \mathrm{~S}_{\mathrm{n}} & =1.1 \mathrm{U}_{0}+1.1 \mathrm{U}_{1}+1.1 \mathrm{U}_{2}+\ldots+1.1 \mathrm{U}_{\mathrm{n}} \\ & =\mathrm{U}_{1}+\mathrm{U}_{2}+\mathrm{U}_{3}+\ldots+\mathrm{U}_{\mathrm{n}+1} . \end{aligned}$ | 1.5 |
| 3b | $\begin{aligned} & \text { 1.1 } \mathrm{S}_{\mathrm{n}}+\mathrm{U}_{0}=\mathrm{U}_{0}+\mathrm{U}_{1}+\mathrm{U}_{2}+\ldots+\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{n}+1}=\mathrm{S}_{\mathrm{n}}+\mathrm{U}_{\mathrm{n}+1} . \\ & \text { Thus } 1.1 \mathrm{~S}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}+\mathrm{U}_{\mathrm{n}+1}-\mathrm{U}_{0} \\ & \quad 1.1 \mathrm{~S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}}=\mathrm{U}_{\mathrm{n}+1}-\mathrm{U}_{0} \\ & 0.1 \mathrm{~S}_{\mathrm{n}}=4000000(1.1)^{\mathrm{n}+1}-4000000 \\ & 0.1 \mathrm{~S}_{\mathrm{n}}=4000000\left[(1.1)^{\mathrm{n}+1}-1\right] \\ & \mathrm{S}_{\mathrm{n}}=40000000\left[(1.1)^{\mathrm{n}+1}-1\right] . \end{aligned}$ | 1.5 |
| 4 | $\mathrm{S}_{5}=40000000\left[(1.1)^{6}-1\right]=30862440$. | 1 |


| QIII | Answer | Mark |
| :---: | :--- | :---: |
| 1 | $\bullet P(A)=\frac{C_{15}^{3}}{C_{40}^{3}}=\frac{7}{152} \quad \bullet P(B)=\frac{\mathrm{C}_{6}^{1} \times \mathrm{C}_{4}^{1} \times \mathrm{C}_{7}^{1}}{\mathrm{C}_{40}^{3}}=0.017 \quad \bullet \mathrm{P}(\mathrm{C})=\frac{\mathrm{C}_{14}^{3}+\mathrm{C}_{11}^{3}+\mathrm{C}_{15}^{3}}{\mathrm{C}_{40}^{3}}=0.099$. | 3 |
| 2 | $\mathrm{P}($ same section $/ 3$ boys $)=\frac{\mathrm{C}_{8}^{3}+\mathrm{C}_{7}^{3}+\mathrm{C}_{8}^{3}}{\mathrm{C}_{23}^{3}}=0.083$. | 1.5 |
| 3 a | $\mathrm{P}\left(1^{\text {st }}\right.$ sec, $2^{\text {nd }}$ sec, $\left.3^{\text {rd }} \sec \right)=\frac{14}{40} \times \frac{11}{39} \times \frac{15}{38}=0.389$. | 1.5 |
| 3 b | $\mathrm{P}\left(\right.$ at least one is from the $1^{\text {st }}$ year $)=1-($ the 3 are from the other years $)$ <br> $=1-\frac{26}{40} \times \frac{25}{39} \times \frac{24}{38}=0.736$. | 1 |


| QIV | Answer | Mark |
| :---: | :---: | :---: |
| A | $f(x)=a e^{x}+b$ and $f(0)=0$, then $: a+b=0$. <br> $f^{\prime}(x)=a e^{x}$ and $f^{\prime}(0)=\frac{1}{8}$, then $: a=\frac{1}{8}$, consequently $b=-\frac{1}{8}$. Hence, $f(x)=\frac{e^{x}-1}{8}$. | 2.5 |
| B1 | $\lim _{x \rightarrow+\infty} \mathrm{g}(\mathrm{x})=0$, then $\mathrm{y}=0$ is an asymptote. | 1 |
| B2 | $\mathrm{g}^{\prime}(\mathrm{x})=-\frac{120 \mathrm{e}^{\mathrm{x}}}{\left(\mathrm{e}^{\mathrm{x}}+15\right)^{2}} \text { and } \mathrm{g}(0)=7.5$ | 1.5 |
| B3 | $x$ 0 <br> $g^{\prime}(x)$ - <br> $g(x)$ $7.5 \underbrace{}_{0}$ | 1.5 |
| B4 |  | 2.5 |
| B5a | $g(5)=\frac{120}{e^{5}+15}=0.73 ; 73$ objects are demanded. | 1 |
| B5b | $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \Rightarrow \mathrm{e}^{2 \mathrm{x}}+14 \mathrm{e}^{\mathrm{x}}-975=0 \Rightarrow \mathrm{e}^{\mathrm{x}}=25 \Rightarrow \mathrm{x}=\ln (25) \approx 3.21887=\alpha$. | 2 |
| B5c | $\begin{aligned} & \mathrm{g}(\alpha)=\mathrm{g}(\ln 25)=\frac{120}{\mathrm{e}^{\ln 25}+15}=\frac{120}{25+15}=3 . \\ & \alpha=\text { Equilibrium price }=1000000 \times 3.218875=3218875 \mathrm{LL} . \\ & \mathrm{g}(\alpha)=\text { Equilibrium quantity }=100 \times 3=300 \text { objects. } \end{aligned}$ | 2 |

