دورة سنة ٢٠٠٨ العادية	امتحانات الشهادة الثانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحاثات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة: ساعتان	عدد المسائل: اربع

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات - يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة) .

I- (4 points)

In the complex plane (P) referred to an orthonormal system (O; \vec{u} , \vec{v}), consider the points

 $\bigcirc \bigcirc \bigcirc \bigcirc A$, B and C of affixes $a = \sqrt{3} - i$, $b = \sqrt{3} + i$ and c = 2i respectively.

- 1) Show that the three points A, B and C are on the same circle with center O.
- 2) Write $\frac{c-b}{a-b}$ in the algebraic and in the exponential forms.
- 3) Let M be a point other than O, of affix z = x + iy, in the plane (P); (x and y are real numbers). Let $Z = \frac{z-b}{z-b}$.

Let
$$Z = \frac{z-z}{z}$$

a- Determine the set (E) of points M such that |Z|=1.

b- Verify that A and C belong to (E).

c- Determine the set (F) of points M such that Z is pure imaginary.

II- (4 points)

To encourage national tourism, a tourist agency proposes week-ends of two days, and offers its customers three choices:

- Full-board week-end
- Half-board week-end
- Luxury week-end.

The agency published the following advertisement:

Choice Destination	Full-board	Half-board	Luxury
Mountain	150 000 LL	100 000 LL	200 000 LL
Beach	100 000 LL	75 000 LL	150 000 LL

This agency estimates that 65% of its customers choose mountains, and the others choose the beach; and that out of the customers to any destination 55% choose full-board and 30% choose half-board while the others choose luxury week-ends.

A customer is chosen at random and is interviewed.

Consider the following events:

- A: « the interviewed customer has chosen the mountains».
- B: « the interviewed customer has chosen the beach ».
- C: « the interviewed customer has chosen full-board week-end ».
- D: « the interviewed customer has chosen half-board week-end ».
- S: « the interviewed customer has chosen the luxury week-end ».

- 1) a- Calculate the following probabilities: $P(A \cap C)$, $P(B \cap C)$ and P(C).
 - b- The interviewed customer had chosen full-board, what is the probability that he chose the beach?
- 2) Let X be the random variable that is equal to the amount paid to the agency by a customer.
 - a- Show that $P(X=150\ 000) = 0.41$ and determine the probability distribution for X.
 - b- Calculate the mean(expected value) E(X). What does the number thus obtained represent?
 - c- Estimate the sum received by this agency when it serves 200 customers.

III- (4 points)

In the space referred to a direct orthonormal system ($O; \vec{i}, \vec{j}, \vec{k}$), consider the points A(1; 2; 0),

B(2; 1; 3), C(3; 3; 1), D(5; -3; -3) and E(-3; 7; 3).

- 1) Find an equation of the plane (P) determined by A, B and C.
- 2) Find a system of parametric equations of line (DE).
- 3) Prove that (P) is the mediator plane of [DE].
- 4) Prove that (BC) is orthogonal to (DE).
- 5) a- Calculate the area of triangle BCD.
 - b- Calculate the volume of tetrahedron ABCD, and deduce the distance from A to plane BCD.

IV- (8 points)

Let f be the function defined on IR by $f(x) = (x - 1)e^x + 1$ and designate by (C) its representative curve in an orthonormal system (O; i, j).

- 1) a- Calculate lim f(x) and deduce an asymptote (d) of (C).
 - b- Study, according to the values of x, the relative positions of (C) and (d).
 - c- Calculate $\lim_{x \to 10^{-6}} f(x)$ and find f(2) in decimal form.
- 2) Calculate f'(x) and set up the table of variations of f.
- 3) Prove that the curve (C) has a point of inflection W whose coordinates are to be determined.
- 4) a- Draw (d) and (C).
 - b- Discuss graphically, according to the values of the real parameter m, the number of solutions of the equation $(m 1) e^{-x} = x 1$.
- 5) Calculate the area of the region bounded by (C), the axis of abscissas and the two lines of equations x = 0 and x = 1.
- 6) a- Show that the function f has on [0; +∞[an inverse function g and draw (G), the representative curve of g in the system (O; i, j).
 - b- Find the area of the region bounded by (G), the axis of ordinates and the line (d).

دورة ۲۰۰۸ العادية	الفرع. علم و الحداة	
دوره ۲۰۰۰ العادیہ	العرع: حلوم الحياة	مشروع معيار التصحيح: رياضيات

QI	Answer	Mark
1	a = b = c = 2 so $OA = OB = OC = 2$.	0.5
2	$\frac{c-b}{a-b} = \frac{-\sqrt{3}+i}{-2i} = \frac{-1-i\sqrt{3}}{2} = e^{i\left(\pi+\frac{\pi}{3}\right)} = e^{-i\frac{2\pi}{3}}.$	1
3a	Z = 1, iff BM = OM, so M moves on the perpendicular bisector (E) of [OB].	1
3b	AB = AO and CB = CO, so A and C are two points on (E).	0.5
3c	$Z = \frac{x + iy - \sqrt{3} - i}{x + iy} = \frac{x^2 + y^2 - \sqrt{3}x - y}{x^2 + y^2} + \frac{-x + \sqrt{3}y}{x^2 + y^2}i$ Z is pure imaginary iff $\begin{cases} x^2 + y^2 - \sqrt{3}x - y = 0\\ -x + \sqrt{3}y \neq 0 \end{cases}$ M moves on a circle excluding O and B. Or : arg (Z) = $\frac{\pi}{2} [\pi] = (\vec{u}, \vec{BM}) - (\vec{u}, \vec{OM}) = (\vec{OM}, \vec{BM}) [\pi].$ So M moves on the circle (F) with diameter [OB], excluding O and B.	1

QII	Answer		Mark	
	$P(A \cap C) = P(A) \times P(C \mid A) = 0.65 \times 0.55 = 0.3575$			
1a	$P(B \cap C) = P(B) \times P(C / B) = 0.35 \times 0.55 = 0.1925$			1
1a	$P(C) = P(A \cap C) + P(B \cap C) = 0.3575 + 0.1925 = 0.55$			1
	OR given $P(C) = 0.55$.			
1b	$P(B/C) = \frac{P(B \cap C)}{P(C)} = \frac{0.1925}{0.55} = 0.35.$			0.5
10	P(C) = 0.55			0.5
	$P(X=150\ 000) = O.65 \times 0.55 + 0.15 \times 0.35 = 0.41.$			
2a	x_i 75000 100	000 150 000	0 200 000	1.5
	$p_i = 0.35 \times 0.3 = 0.105 = 0.35 \times 0.55 + 0.000000000000000000000000000000$	55×0.3=0.3875 0.41	$0.65 \times 0.15 = 0.0975$	
2b	$E(X) = \sum p_i x_i = 0.105 \times 75000 + 0.3875 \times 100000 + 0.41 \times 150000 + 0.0975 \times 200000 = 127 625$ The average amount paid by a voyager is 127 625 LL.			0.5
2c	An estimation of the sum received is: $127625 \times 200 = 25525000$ LL.			0.5

QIII	Answer	Mark
1	$\overrightarrow{N} = \overrightarrow{AB} \wedge \overrightarrow{AC}$ (4;-5;-3) is normal to (P); (P): $\overrightarrow{AM} \cdot \overrightarrow{N} = 0$. Hence $4x - 5y - 3z + 6 = 0$.	0.5
2	(DE): $x = -8t + 5$; $y = 10t - 3$; $z = 6t - 3$.	0.5
3	A director vector of (DE) and a normal vector of (P) have the same direction; Mid point (1; 2; 0) of [DE] belongs to (P).	1
4	$ \overrightarrow{DE} (-8; 10; 6) \cdot \overrightarrow{BC} (1; 2; -2) = 0 . $ $ \overrightarrow{OR} \text{ since (DE) is perpendicular to plane (P). } $	0.5
5a	$\overrightarrow{\text{DB}} \wedge \overrightarrow{\text{DC}} (-20; 0; -10), \text{ area} = \frac{1}{2}\sqrt{500} = \sqrt{125} = 5\sqrt{5}$.	0.5
5b	$Volume = \frac{1}{6} \left \overrightarrow{DA} \cdot (\overrightarrow{DB} \wedge \overrightarrow{DC}) \right = \frac{50}{6} = \frac{25}{3} \cdot V = \frac{base \times h}{3} \cdot \frac{25}{3} = \frac{5\sqrt{5} h}{3} \cdot so h = \sqrt{5} \cdot \frac{1}{3} \cdot \frac$	1

Q IV	Answer	Mark
1a	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (xe^x - e^x + 1) = 1$, so the line with equation $y = 1$ is asymptote to (C).	0.5
1b	$f(x) - 1 = (x - 1)e^{x}.$ $\Box (C) \text{ cuts (d) at point (1 ; 1)}$ $\Box \text{ For } x > 1, (C) \text{ is above (d)}$ $\Box \text{ For } x < 1, (C) \text{ is below (d)}.$	0.5
1c	$\lim_{x \to +\infty} f(x) = +\infty$ and $f(2) = 8.389$.	0.5
2	$f'(x) = e^{x} + (x - 1)e^{x} = xe^{x} \cdot \frac{x - \infty 0 + \infty}{f'(x) - 0 + f(x) - 0 + \infty}$	1
3	$f''(x) = (x + 1)e^{x}$; $f''(x)$ vanishes for $x = -1$ and changes signs, thus (C) has a point of inflection $W(-1, 1 - \frac{2}{e})$.	0.5
4a		1.5
4b	$(m-1)e^{-x} = x - 1$ gives $m = (x - 1)e^x + 1.$ \Box For $m < 0$; no solution \Box For $m < 0$; no solution \Box For $0 < m < 1$; two solutions \Box For $m \ge 1$; single solution.	1
5	$A = \int_{0}^{1} [(x-1)e^{x} + 1]dx = [(x-2)e^{x} + x]_{0}^{1} = (3-e)u^{2}.$	1
6a	f is continuous and strictly increasing on $[0; +\infty[$, thus f has an inverse function g. (G) is symmetric of (C) wrt the line of equation $y=x$.	1
бb	The area A' of the region bounded by (G), the axis of ordinates and the line (d) is equal (by symmetry) to the area A of the region bounded by (C), the axis of abscissas and the two lines $x = 0$ and $x = 1$, consequently $A' = A = (3 - e)u^2$.	0.5