دورة سنّة ^ . . . (العادية	امتحاتات الثهادة الثنانوية العامة الفرع : علوم الحياة	وزارة التربية والتعليم العاللي المديريـة العامـة للتربية
الرقم: الاسم:	مسابقة في مادة الرياضيـات المدة: ساعتان	عدد المسائل: اربع

$$
\begin{aligned}
& \text { ملاحظة: - يسمح باستعمـال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومـات أو رسم البيانات } \\
& \text { - يستطيع المرشح الإجابة بالترتيب الذي بناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة) . }
\end{aligned}
$$

I- (4 points)

In the complex plane (P) referred to an orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$), consider the points
9्ल A, B and C of affixes $a=\sqrt{3}-i, b=\sqrt{3}+i$ and $c=2 i$ respectively.

1) Show that the three points A, B and C are on the same circle with center O.
2) Write $\frac{c-b}{a-b}$ in the algebraic and in the exponential forms.
3) Let M be a point other than O, of affix $z=x+i y$, in the plane (P); (x and y are real numbers).

Let $Z=\frac{Z-b}{z}$.
a- Determine the set (E) of points M such that $|\mathrm{Z}|=1$.
b- Verify that A and C belong to (E).
c- Determine the set (F) of points M such that Z is pure imaginary.

II- (4 points)

To encourage national tourism, a tourist agency proposes week-ends of two days, and offers its customers three choices:

- Full-board week-end
- Half-board week-end
- Luxury week-end.

The agency published the following advertisement:

Destination	Full-board	Half-board	Luxury
Mountain	150000 LL	100000 LL	200000 LL
Beach	100000 LL	75000 LL	150000 LL

This agency estimates that 65% of its customers choose mountains, and the others choose the beach; and that out of the customers to any destination 55\% choose full-board and 30\% choose half-board while the others choose luxury week-ends.
A customer is chosen at random and is interviewed.
Consider the following events:
A : « the interviewed customer has chosen the mountains».
B: « the interviewed customer has chosen the beach ».
C: « the interviewed customer has chosen full-board week-end ».
D : « the interviewed customer has chosen half-board week-end».
S: « the interviewed customer has chosen the luxury week-end ».

1) a- Calculate the following probabilities: $\mathrm{P}(\mathrm{A} \cap \mathrm{C}), \mathrm{P}(\mathrm{B} \cap \mathrm{C})$ and $\mathrm{P}(\mathrm{C})$.
b- The interviewed customer had chosen full-board, what is the probability that he chose the beach?
2) Let X be the random variable that is equal to the amount paid to the agency by a customer. a- Show that $\mathrm{P}(\mathrm{X}=150000)=0.41$ and determine the probability distribution for X . b- Calculate the mean(expected value) $\mathrm{E}(\mathrm{X})$. What does the number thus obtained represent? c- Estimate the sum received by this agency when it serves 200 customers.

III- (4 points)

In the space referred to a direct orthonormal system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \vec{j}, \vec{k})$, consider the points $\mathrm{A}(1 ; 2 ; 0)$, $B(2 ; 1 ; 3), C(3 ; 3 ; 1), D(5 ;-3 ;-3)$ and $E(-3 ; 7 ; 3)$.

1) Find an equation of the plane (P) determined by A, B and C.
2) Find a system of parametric equations of line (DE).
3) Prove that (P) is the mediator plane of [DE].
4) Prove that (BC) is orthogonal to (DE).
5) a- Calculate the area of triangle BCD.
b- Calculate the volume of tetrahedron ABCD , and deduce the distance from A to plane BCD.

IV- (8 points)

Let f be the function defined on IR by $f(x)=(x-1) e^{x}+1$ and designate by (C) its representative curve in an orthonormal system ($\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}$).

1) a- Calculate $\lim _{x \rightarrow-\infty} f(x)$ and deduce an asymptote (d) of (C).
b- Study, according to the values of x, the relative positions of (C) and (d).
c- Calculate $\lim _{x \rightarrow+\infty} f(x)$ and find $f(2)$ in decimal form.
2) Calculate $f^{\prime}(x)$ and set up the table of variations of f.
3) Prove that the curve (C) has a point of inflection W whose coordinates are to be determined.
4) a- Draw (d) and (C).
b- Discuss graphically, according to the values of the real parameter m, the number of solutions of the equation $(m-1) e^{-x}=x-1$.
5) Calculate the area of the region bounded by (C), the axis of abscissas and the two lines of equations $x=0$ and $x=1$.
6) a- Show that the function f has on $[0 ;+\infty$ [an inverse function g and draw (G), the representative curve of g in the system $(O ; \vec{i}, \vec{j})$.
b- Find the area of the region bounded by (G), the axis of ordinates and the line (d).

Q I	Answer	Mark
1	$\|a\|=\|b\|=\|c\|=2$ so $\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=2$.	0.5
2	$\frac{c-b}{a-b}=\frac{-\sqrt{3}+i}{-2 i}=\frac{-1-i \sqrt{3}}{2}=e^{i\left(\pi+\frac{\pi}{3}\right)}=e^{-i \frac{2 \pi}{3}} .$	1
3a	$\|Z\|=1$, iff $\mathrm{BM}=\mathrm{OM}$, so M moves on the perpendicular bisector (E) of [OB].	1
3b	$\mathrm{AB}=\mathrm{AO}$ and $\mathrm{CB}=\mathrm{CO}$, so A and C are two points on (E).	0.5
3c	$\begin{aligned} & Z=\frac{x+i y-\sqrt{3}-i}{x+i y}=\frac{x^{2}+y^{2}-\sqrt{3} x-y}{x^{2}+y^{2}}+\frac{-x+\sqrt{3} y}{x^{2}+y^{2}} i \\ & Z \text { is pure imaginary iff }\left\{\begin{array}{l} x^{2}+y^{2}-\sqrt{3} x-y=0 \\ -x+\sqrt{3} y \neq 0 \end{array}\right. \end{aligned}$ M moves on a circle excluding O and B . Or: $\arg (\mathrm{Z})=\frac{\pi}{2}[\pi]=(\vec{u}, \overrightarrow{B M})-(\vec{u}, \overrightarrow{O M})=(\overrightarrow{O M}, \overrightarrow{B M})[\pi]$. So M moves on the circle (F) with diameter [OB], excluding O and B .	1

Q II	Answer					Mark
1a	$\begin{aligned} & P(A \cap C)=P(A) \times P(C / A)=0.65 \times 0.55=0.3575 \\ & P(B \cap C)=P(B) \times P(C / B)=0.35 \times 0.55=0.1925 \\ & P(C)=P(A \cap C)+P(B \cap C)=0.3575+0.1925=0.55 \end{aligned}$ OR given $P(C)=0.55$.					1
1b	$P(B / C)=\frac{P(B \cap C)}{P(C)}=\frac{0.1925}{0.55}=0.35$					0.5
2a	$\mathrm{P}(\mathrm{X}=150000)=0.65 \times 0.55+0.15 \times 0.35=0.41$.					1.5
	χ_{i}	75000	100000	150000	200000	
	p_{i}	$0.35 \times 0.3=0.105$	$0.35 \times 0.55+0.65 \times 0.3=0.3875$	0.41	$0.65 \times 0.15=0.0975$	
2b	$E(X)=\sum p_{i} x_{i}=0.105 \times 75000+0.3875 \times 100000+0.41 \times 150000+0.0975 \times 200000=127625$ The average amount paid by a voyager is 127625 LL .					0.5
2c	An estimation of the sum received is: $127625 \times 200=25525000$ LL.					0.5

QIII	Answer	Mark
1	$\vec{N}=\overrightarrow{\mathrm{AB}} \wedge \overrightarrow{\mathrm{AC}}(4 ;-5 ;-3)$ is normal to $(\mathrm{P}) ;(\mathrm{P}): \overrightarrow{\mathrm{AM}} \cdot \overrightarrow{\mathrm{N}}=0$. Hence $4 x-5 y-3 z+6=0$.	0.5
2	(DE): $\mathrm{x}=-8 \mathrm{t}+5 ; \mathrm{y}=10 \mathrm{t}-3 ; \mathrm{z}=6 \mathrm{t}-3$.	0.5
3	A director vector of (DE) and a normal vector of (P) have the same direction; Mid point $(1 ; 2 ; 0)$ of $[\mathrm{DE}]$ belongs to (P).	1
4	$\overrightarrow{\mathrm{DE}}(-8 ; 10 ; 6) \cdot \overrightarrow{\mathrm{BC}}(1 ; 2 ;-2)=0$. - OR since (DE) is perpendicular to plane (P).	0.5
5a	$\overrightarrow{\mathrm{DB}} \wedge \overrightarrow{\mathrm{DC}}(-20 ; 0 ;-10)$, area $=\frac{1}{2} \sqrt{500}=\sqrt{125}=5 \sqrt{5}$.	0.5
5b	$\text { Volume }=\frac{1}{6}\|\overrightarrow{\mathrm{DA}} .(\overrightarrow{\mathrm{DB}} \wedge \overrightarrow{\mathrm{DC}})\|=\frac{50}{6}=\frac{25}{3} . \quad \mathrm{V}=\frac{\text { base } \times \mathrm{h}}{3}, \frac{25}{3}=\frac{5 \sqrt{5} \mathrm{~h}}{3} \text {, so } \mathrm{h}=\sqrt{5} .$	1

Q IV	Answer	Mark
1 a	$\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}\left(\mathrm{xe}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1\right)=1$, so the line with equation $\mathrm{y}=1$ is asymptote to (C).	0.5
1b	$f(x)-1=(x-1) e^{x}$. (C) cuts (d) at point $(1 ; 1)$ For $\mathrm{x}>1$, (C) is above (d) For $x<1$, (C) is below (d).	0.5
1c	$\lim _{x \rightarrow+\infty} f(x)=+\infty \text { and } f(2)=8.389$	0.5
2	$f^{\prime}(x)=e^{x}+(x-1) e^{x}=x e^{x}$x $-\infty$ 0 $+\infty$ $\mathrm{f}^{\prime}(\mathrm{x})$ - 0 + $\mathrm{f}(\mathrm{x})$ 1	1
3	$f^{\prime \prime}(x)=(x+1) e^{x} ; f^{\prime \prime}(x)$ vanishes for $x=-1$ and changes signs, thus (C) has a point of inflection $W\left(-1,1-\frac{2}{e}\right)$.	0.5
4a		1.5
4b	$(\mathrm{m}-1) \mathrm{e}^{-\mathrm{x}}=\mathrm{x}-1 \quad$ gives $\mathrm{m}=(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}+1$. \square For $\mathrm{m}<0$; no solution \square For $\mathrm{m}=0$; one solution (double) \square For $0<\mathrm{m}<1$; two solutions \square For $\mathrm{m} \geq 1$; single solution.	1
5	$A=\int_{0}^{1}\left[(x-1) e^{x}+1\right] d x=\left[(x-2) e^{x}+x\right]_{0}^{1}=(3-e) u^{2} .$	1
6 a	f is continuous and strictly increasing on [0 ; + + [, thus f has an inverse function g . (G) is symmetric of (C) wrt the line of equation $\mathrm{y}=\mathrm{x}$.	1
6b	The area A' of the region bounded by (G), the axis of ordinates and the line (d) is equal (by symmetry) to the area A of the region bounded by (C), the axis of abscissas and the two lines $x=0$ and $x=1$, consequently $A^{\prime}=A=(3-e) u^{2}$.	0.5

