اسس التصحيح – لمادة الفيزياء – شهادة الثانوية العامة فرع علوم الحياة – دورة ٢٠٠٤ الاستثنائية

First exercise (6 pts.) 1. The kinetic energy of the system (block, bullet) (1/4pt.) **2.** $\vec{P}_{\text{before}} = \vec{P}_{\text{after}}$ (1/4 pt) m $\vec{V}_0 = (M+m)\vec{V}_1$ (1/4 pt) so : $V_1 = \frac{mV_0}{(M+m)}$ (1/4 pt.) **3. a.** M.E = $P.E_g + K.E$ (1/4pt.) M.E = 0 + K.E = $\frac{1}{2}(M + m) V_1^2$ (1/4pt.) M.E = $\frac{1}{2}$ (M+m) $[\frac{mV_0}{(M+m)}]^2 = \frac{1}{2} \frac{m^2 V_0^2}{(M+m)}$ (1/4 pt.) **b.** M = (M+m)gh(1/4pt.) $h = \ell - \ell \cos \alpha = \ell (1 - \cos \alpha)$ (1/2pt) \Rightarrow M.E = (M+m)g ℓ (1-cos α) (1/4pt.) c. The mechanichal energy of the system (block, bullet) is conserved because friction is neglected . (1/2pt.) $\frac{1}{2} \frac{m^2 V_0^2}{(M+m)} = (M+m)g \,\ell \,(1-\cos\alpha)$ $V_0 = \frac{(M+m)}{m} \sqrt{2gl(1-\cos\alpha)}$ (1pt.) $V_0 = 101.3 \text{ m/s}$ (1/2 pt.)**4.** K.E_{before} = $\frac{1}{2}$ m V₀² (1/4pt) $K.E_{before} = 102.6 J$ (1/4pt) $K.E_{after} = \frac{1}{2} (M+m) V_1^2$ $=\frac{1}{2}\frac{m^2 V_0^2}{(M+m)}$ (1/4pt) $K.E_{after} = 2 J$ (1/4pt) $K.E_{before} > K.E_{after}$, the answer is verified. (1/4pt)

Second exercise (7 pts.) **A-I.** X is a capacitor because at the end of charging the current becomes zero (3/4)**2.** Y is a resistor because the current remains constant.(3/4 pt) **3.** Z is a coil because the current grows with a certain delay. (3/4 pt) **B-1.a)** $B = 10^{-4} A / Hz$ (1 pt) **b**) Given : $i = \frac{dq}{dt} = \frac{Cdu_C}{dt}$ $i = C U \sqrt{2} 2\pi f \cos 2\pi ft$ \Rightarrow i = I $\sqrt{2}$ cos2 π ft \Rightarrow I = 2 π C U f = B f \Rightarrow B = 2 π C U (13/4pt.)c) C = B / 2π U = 10^{-4} / 2π = 16×10^{-6} F (1/2 pt)**2.a)** Current resonance (1/2 pt)**b**) $f_0 = \frac{1}{2\pi \sqrt{LC}}$ (1/2 pt) \Rightarrow L = 0.11 H. (1/2 pt)

Third exercise (7 pts) A-1) the nuclei having the same charge number Z but different mass number A.	(1/2 pt.)
2) ${}^{14}_{7}N + {}^{1}_{0}n \longrightarrow {}^{14}_{6}C + {}^{1}_{1}p$	(3/4 pt.)
3 The emitted particle is a proton (or hydrogen nucleus)	(1/4pt.)
B-1. ${}_{0}^{1}n \longrightarrow {}_{-1}^{0}e + {}_{1}^{1}p$	(3/4 pt.)
2. the binding energy of a nucleus of mass m is : $E_1 = \Delta m.c^2$	(1/4pt.)
with $\Delta m = [Zm_p + (A-Z)m_n] - m_x$	(1/4pt)
the binding energy per nucleon is $\frac{E_l}{A}$.(1/4pt)
- for the nucleus ${}^{14}_{6}C$ we have :	
$\Delta m = 6 \times 1.00728 + 8 \times 1.00866 - 14.0065$ $\Delta m = 0.10646 \text{ u}; E_1 = 99.16749 \text{ MeV}$	
$\frac{E_l}{A} = 7.083 \text{ MeV}$	(1/2 pt)
- for the nucleus $\frac{14}{7}N$ we have ;	
$\Delta m = 7 \times 1.00728 + 7 \times 1.00866 - 14.0031$	
$\Delta m = 0.10848 \text{ u}$; $E_1 = 101.04912 \text{ MeV}$	
$\frac{E_{l}}{A}$ = 7,217 MeV	(1/2 pt)
3. We notice that the binding energy per nucleon of ${}^{14}_7N$ is greater than that of ${}^{14}_6C$; The nitrogen nucleus ${}^{14}_{7}N$ is more stable than the
$\operatorname{carbon}_{6}^{14}C$ nucleus. (1/4pt)	
4.a) $\lambda = \frac{0.693}{T}$;	(1/4pt)
$\lambda = 1.244 \times 10^{-4} \text{ year}^{-1} = 3.94 \times 10^{-12} \text{ s}^{-1}$	(1/4pt)
b) $n = \frac{0.05 \times 6.02 \times 10^{23}}{14} = 215 \times 10^{19}$ nuclei	(1/2pt)
c) $A = \lambda \times n$ (1/4 pt); $A = 8471 \times 10^{10}$ Bq.	(1/4pt)
A = 200 dis./min $A = 20 dis./min$	
A=A ₀ e ^{-λt} (1/4pt) ; $t = \frac{\ln \frac{-6}{\lambda}}{\lambda} = 18509$ years	(1pt)