```
\ التصحيح - لمادة الفيزياء - شهادة الثانوية العامة فرع علوم الحياة - دورة & . . . الاستثائية
```


First exercise (6 pts.)

1. The kinetic energy of the system (block, bullet) (1/4pt.)
2. $\vec{P}_{\text {before }}=\vec{P}_{\text {after }}(\mathbf{1} / 4 \mathbf{~ p t)}$

$$
\mathrm{m} \vec{V}_{0}=(\mathrm{M}+\mathrm{m}) \vec{V}_{1} \quad(\mathbf{1} / \mathbf{4} \mathbf{~ p t}) \quad \text { so }: V_{1}=\frac{m V_{0}}{(M+m)} \quad(\mathbf{1} / \mathbf{4} \mathbf{~ p t .})
$$

3. a. $\mathrm{M} . \mathrm{E}=$ P. $\mathrm{E}_{\mathrm{g}}+\mathrm{K} . \mathrm{E}(\mathbf{1 / 4 p t}$.

$$
\mathrm{M} . \mathrm{E}=0+\mathrm{K} \cdot \mathrm{E}=\frac{1}{2}(M+m) \mathrm{V}_{1}^{2}(\mathbf{1} / \mathbf{p} \mathbf{p t})
$$

M.E $=\frac{1}{2}(\mathrm{M}+\mathrm{m})\left[\frac{m V_{0}}{(M+m)}\right]^{2}=\frac{1}{2} \frac{m^{2} V_{0}{ }^{2}}{(M+m)} \quad(\mathbf{1} / \mathbf{4} \mathbf{~ p t}$.
$\begin{array}{lc}\text { b. } \mathrm{M} . \mathrm{E}=(\mathrm{M}+\mathrm{m}) \mathrm{gh} & (\mathbf{1} / \mathbf{4 p t .}) \\ \mathrm{h}=\ell-\ell \cos \alpha=\ell(1-\cos \alpha) & (\mathbf{1 / 2 p t}) \\ \Rightarrow \mathrm{M} \cdot \mathrm{E}=(\mathrm{M}+\mathrm{m}) \mathrm{g} \ell(1-\cos \alpha) & (\mathbf{1} / \mathbf{4 p t .})\end{array}$
c. The mechanichal energy of the system (block, bullet) is conserved because friction is neglected. (1/2pt.)
$\frac{1}{2} \frac{m^{2} V_{0}{ }^{2}}{(M+m)}=(\mathrm{M}+\mathrm{m}) \mathrm{g} \ell(1-\cos \alpha)$

$$
\begin{array}{ll}
V_{0}=\frac{(M+m)}{m} \sqrt{2 g l(1-\cos \alpha)} & (\mathbf{1 p t .)} \\
V_{0}=101.3 \mathrm{~m} / \mathrm{s} & (\mathbf{1} / \mathbf{2} \mathbf{~ p t .)} \\
\text { 4. } \mathrm{K.E}_{\text {before }}=1 / 2 \mathrm{~m} \mathrm{~V}_{0}{ }^{2} & (\mathbf{1} / \mathbf{p t}) \\
\text { K.E.E before }=102.6 \mathrm{~J} & (\mathbf{1} \mathbf{4} \mathbf{p t}) \\
\text { K.E Eafter } & =1 / 2(\mathrm{M}+\mathrm{m}) \mathrm{V}_{1}{ }^{2} \\
\quad=\frac{1}{2} \frac{m^{2} V_{0}{ }^{2}}{(M+m)} & (\mathbf{1} / \mathbf{4 p t})
\end{array}
$$

$K . \mathrm{E}_{\text {after }}=2 \mathrm{~J}$ (1/4pt)
K.E $_{\text {before }}>$ K. $E_{\text {after }}$, the answer is verified. ($\mathbf{1 / 4 p t)}$

Second exercise (7 pts.)

A-
I. X is a capacitor because at the end of charging the current becomes zero (3/4)
2. Y is a resistor because the current remains constant. (3/4 pt)
3. Z is a coil because the current grows with a certain delay. ($\mathbf{3} / \mathbf{4} \mathbf{~ p t}$)

B-1.a) $\mathrm{B}=10^{-4} \mathrm{~A} / \mathrm{Hz}(\mathbf{1} \mathbf{~ p t})$
b) Given : $\mathrm{i}=\frac{d q}{d t}=\frac{C d u_{C}}{d t}$
$\mathrm{i}=\mathrm{C} \mathrm{U} \sqrt{2} 2 \pi \mathrm{f} \cos 2 \pi \mathrm{ft}$
$\Rightarrow \mathrm{i}=\mathrm{I} \sqrt{2} \cos 2 \pi \mathrm{ft}$
$\Rightarrow \mathrm{I}=2 \pi \mathrm{CUf}=\mathrm{Bf} \Rightarrow \mathrm{B}=2 \pi \mathrm{CU}$
(13/4pt.)
c) $\mathrm{C}=\mathrm{B} / 2 \pi \mathrm{U}=10^{-4} / 2 \pi=16 \times 10^{-6} \mathrm{~F}$
($\mathbf{1 / 2} \mathbf{~ p t}$)
2.a) Current resonance ($\mathbf{1 / 2} \mathbf{~ p t)}$
b) $\mathrm{f}_{0}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}(\mathbf{1 / 2} \mathbf{~ p t})$
$\Rightarrow \mathrm{L}=0.11 \mathrm{H} .(\mathbf{1} / \mathbf{2} \mathbf{~ p t})$

Third exercise (7 pts)

A-1) the nuclei having the same charge number Z but different mass number A .
2)

$$
{ }_{7}^{14} N+{ }_{0}^{1} n \longrightarrow{ }_{6}^{14} C+{ }_{1}^{1} p
$$

3 The emitted particle is a proton (or hydrogen nucleus)
B-1. ${ }_{0}^{1} n \longrightarrow{ }_{-1}^{0} e+{ }_{1}^{1} p$
2. the binding energy of a nucleus of mass m is : $\mathrm{E}_{1}=\Delta m \cdot c^{2}$
with $\Delta m=\left[\mathrm{Zm}_{\mathrm{p}}+(\mathrm{A}-\mathrm{Z}) \mathrm{m}_{\mathrm{n}}\right]-\mathrm{m}_{\mathrm{x}}$
the binding energy per nucleon is $\frac{E_{l}}{A}$
(1/2 pt.)
(3/4 pt.)
(1/4pt.)
(3/4 pt.)
(1/4pt.)
(1/4pt)
.(1/4pt)

- for the nucleus ${ }_{6}^{14} C$ we have :
$\Delta m=6 \times 1.00728+8 \times 1.00866-14.0065$
$\Delta m=0.10646 \mathrm{u} ; \quad \mathrm{E}_{\mathrm{l}}=99.16749 \mathrm{MeV}$
$\frac{E_{l}}{A}=7.083 \mathrm{MeV}$
- for the nucleus ${ }_{7}^{14} N$ we have;
$\Delta m=7 \times 1.00728+7 \times 1.00866-14.0031$
$\Delta m=0.10848 \mathrm{u} ; \quad \mathrm{E}_{1}=101.04912 \mathrm{MeV}$
$\frac{E_{l}}{A}=7,217 \mathrm{MeV}$

3. We notice that the binding energy per nucleon of ${ }_{7}^{14} \mathrm{~N}$ is greater than that of ${ }_{6}^{14} \mathrm{C}$; The nitrogen nucleus ${ }_{7}^{14} \mathrm{~N}$ is more stable than the carbon ${ }_{6}^{14} \mathrm{C}$ nucleus . ($\mathbf{1 / 4 p t)}$
4.a) $\lambda=\frac{0,693}{T}$;
(1/4pt)
$\lambda=1.244 \times 10^{-4} \mathrm{year}^{-1}=3.94 \times 10^{-12} \mathrm{~s}^{-1}$
(1/4pt)
b) $\mathrm{n}=\frac{0.05 \times 6.02 \times 10^{23}}{14}=215 \times 10^{19}$ nuclei
c) $\mathrm{A}=\lambda \times n \quad(\mathbf{1} / \mathbf{4} \mathbf{~ p t}) ; \quad \mathrm{A}=8471 \times 10^{10} \mathrm{~Bq}$.

$$
(\mathbf{1} / 4 \mathrm{pt})
$$

C- $\mathrm{A}_{0}=200$ dis. $/ \mathrm{mn} \quad \mathrm{A}=20 \mathrm{dis} . / \mathrm{mn}$

$$
\begin{equation*}
\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\lambda t}(\mathbf{1} / \mathbf{4} \mathbf{p t}) \quad ; \quad \mathrm{t}=\frac{\ln \frac{A_{0}}{A}}{\lambda}=18509 \text { years } \tag{1pt}
\end{equation*}
$$

