دورة سنة ٢٠٠٤ الاستثنائية	امتحانات الشهادة الثانوية	المعامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
	فرع علوم الحياة		دائرة الامتحانات
الأسم :	مسابقة في الرياضيات		عدد المسائل: اربع
الرقم :	المدة : ساعتان		

لاحظة: يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I- (3.5 points).

In the plane referred to a direct orthonormal system $(O; \vec{u}, \vec{v})$, consider the points

A , B and M of affixes -1 , 4 and z respectively, and let M' be the point of affix z' $\!\!\!$

such that
$$z' = \frac{z-4}{z+1}$$
 ($z \neq -1$).

- 1) In the case where z = 1 + i, write z' in its algebraic form, and give its exponential form.
- 2) Determine the values of z for which z' = z.
- 3) a- Give a geometric interpretation of | z + 1|, and of | z 4|.
 b- Find, when | z' | = 1, the line on which the point M moves.

II- (3.5 points).

In the space referred to a direct orthonormal system

 $(O; \vec{i}, \vec{j}, \vec{k})$, consider the cube OABCDEFG such that : A(1; 0; 0), B(1; 1; 0) and F(1; 1; 1). Designate by P, Q and R the midpoints of the segments [DG], [DE] and [AE] respectively.

1) a-Show that 2x + 2y + 2z - 3 = 0 is an equation of the plane (PQR).

b- Prove that the plane (PQR) passes through the midpoint of [AB].

c- Prove that the planes (PQR) and (BEG) are parallel.

2) a- What is the nature of quadrilateral EGCA?

b- Let M be a variable point on the line (AC).

Show that $\overrightarrow{AM} \times \overrightarrow{EF} = \overrightarrow{AM} \times \overrightarrow{GF}$.

III-(4 points).

A multiple choice test is made up of **three** independent questions. The candidate is required to answer all the questions .Each question has two suggested answers out of

which only one is correct.

A candidate answers randomly each of these three questions.

1) a- Show that the probability that he answers the three questions correctly is

equal to $\frac{1}{8}$.

b- Consider the event E : « Among the three answers of the candidate, exactly

two are correct ».

Calculate the probability of E.

2) The test is marked as follows : +5 points for each correct answer, and -3 points

for each wrong answer.

Designate by X the random variable that is equal to the total mark obtained by

the candidate upon answering the questions of this test.

a- Determine the 4 possible values of X.

b- Determine the probability distribution of X , and calculate the

mean (expected value) E (X).

IV-(9 points).

Consider the differential equation (E) : y''-2y' + y = x + 1.

1) Let y = z + x + 3.

a- Write a differential equation (E') satisfied by z, and solve (E').

b- Deduce the general solution of (E).

2) Let f be a particular solution of (E). The curve (T), in the adjacent figure, is the representative curve of the function f' the derivative of f. Show that f(x) = xe^x + x + 3. *Designate by* (C) *the representative curve* 0 of the function f in an orthonormal¹ system (O; i, j); unit 2cm. 3) a- Calculate f(1) and lim_{x→+∞} f(x). b- Calculate $\lim_{x \to -\infty} f(x)\,$, and show that the line $\,(d\,)\,$ of equation y=x+3

is an asymptote of (C).

c- Determine, according to the values of x, the relative positions of (C) and (d).

d-Verify that I (-2; 1 – $\frac{2}{e^2}$) is a point of inflection of the curve

(C) .

4) a- Verify that f is strictly increasing on IR , and set up its table of variations.

b-Draw (d) and (C).

c- Calculate ,in cm², the area of the region bounded by the curve (C), the

line (d) and the lines of equations x = 0 and x = 1.

Answer	Key
--------	-----

	Science stions	es MATH 2 nd Session 2 Answers	2004 G
Ques			0
I	1	$z' = \frac{1+i-4}{1+i+1} = \frac{-3+i}{2+i} = -1 + i = \sqrt{2}e^{i\frac{3\pi}{4}}$	1 1⁄2
	2	$z' = z$; $z = \frac{z-4}{z+1}$; $z^2 = -4$; $z = -2i$ or $z = 2i$.	1⁄2
	3-a-	$ z + 1 = z_M - z_A = MA ; \qquad z - 4 = z_M - z_B = MB$	1/2
	3-b-	$ \mathbf{z}' = \frac{\mathbf{MB}}{\mathbf{MA}}$; since $ \mathbf{z}' = 1$ then $\mathbf{MB} = \mathbf{MA}$.	1
		M moves on the perpendicular bisector of [AB].	
	1-a-	P(0; $\frac{1}{2}$; 1), Q($\frac{1}{2}$; 0; 1), R(1; 0; $\frac{1}{2}$) the coordinates of P, Q and R verify the equation $2x + 2y + 2z - 3 = 0$	1⁄2
		• or : M(x ; y ; z) is a point of the plane (PQR) iff $PM.(PQ \land PR) = 0$.	
Π	1-b-	$I(1; \frac{1}{2}; 0)$: mid point of [AB], the coordinates of I satisfy the equation of the plane (PQR).	1⁄2
	1-c-	 (PQ) is parallel to (EG); (QR) is parallel to (DA) which is parallel to (BG) (PQR) contains two intersecting lines parallel to two intersecting lines in de (EBG); then (PQR) and (EBG) are parallel. ▶or: x + y + z - 2 = 0 is an equation of the plane (BEG). The two distinct planes(PQR) and (BEG) are parallel having two collinear normal vectors. 	1
	2-a-	$\vec{EA} = \vec{GC}$ (EA) is perpendicular to the plane (OABC), then (EA) \perp (AC) EAGC is a rectangle.	1⁄2
	2-b-	$\vec{A} \vec{M} \wedge \vec{EF} = \vec{A} \vec{M} \wedge (\vec{E} \vec{G} + \vec{G} \vec{F}) = \vec{A} \vec{M} \wedge \vec{E} \vec{G} + \vec{A} \vec{M} \wedge \vec{G} \vec{F}$ $\vec{A} \vec{M} \text{ and } \vec{E} \vec{G} \text{ are collinear, } \vec{A} \vec{M} \wedge \vec{E} \vec{G} = \vec{0} \text{, then } \vec{A} \vec{M} \wedge \vec{E} \vec{F} = \vec{A} \vec{M} \wedge \vec{G} \vec{F}$ $\vec{P} \text{ or } (\vec{A} \vec{C}) : x = -\alpha + 1 \text{ ; } y = \alpha \text{ , } z = 0$ $\vec{A} \vec{M} (-\alpha \text{ ; } \alpha \text{ ; } 0) \text{ , } \vec{E} \vec{F} (0 \text{ ; } -1 \text{ ; } 0) \text{ , } \vec{G} \vec{F} (1 \text{ ; } 0 \text{ ; } 0) \text{ ; } \vec{A} \vec{M} \wedge \vec{E} \vec{F} = \vec{A} \vec{M} \wedge \vec{G} \vec{F} = \alpha \vec{k}$	1
III	1-a- 1-b- 2-a-	$\begin{array}{c} C \\ C \\ C \\ C \\ C \\ C \\ F \\ C \\ W \\ W \\ \hline C \\ W \\ C \\ W \\ C \\ W \\ C \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\ W \\ W \\ \hline C \\ W \\$	1 1 1/2
	2-b-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1/2

		E(X) = -9/8 - 3/8 + 21/8 + 15/8 = 3		
	1 -	y''-2y'+y = x + 1 with $y' = z'+1$ and $y'' = z''$ then $z''-2z'+z = 0$.		
	1-a-	Characteristic equation $r^2 - 2r + 1 = 0$; $r_1 = r_2 = 1$ and $z = (c_1 x + c_2)e^x$.	1 1/2	
	1-b-	The general solution of (E) is $y = (c_1x + c_2)e^x + x + 3$.	1⁄2	
		According to the graph: $f'(-1) = 1$ and $f'(0) = 2$		
		$f'(x) = c_1 e^x + (c_1 x + c_2) e^x + 1$		
	2	$f'(-1) = 1$ gives $\frac{c_2}{e} + 1 = 1$ so $c_2 = 0$,	1	
		$f'(0) = 2$ gives $c_1 + c_2 + 1 = 2$ so $c_1 = 1$,		
		$f(x) = xe^x + x + 3.$		
	3-a-	$f(1) = e + 4 \approx 6.738$, $\lim_{x \to +\infty} f(x) = +\infty$.	1⁄2	
		$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} xe^{x} + \lim_{x \to -\infty} (x+3) = 0 - \infty = -\infty.$		
	3-b-	$\lim_{x \to -\infty} [f(x) - (x + 3)] = \lim_{x \to -\infty} xe^{x} = 0$, then the line (d) of equation	1	
		$x \rightarrow -\infty$ y = x + 3 is an asymptote of (C).		
	3-с-	$f(x) - (x+3) = xe^x$		
IV		For $x = 0$, (C) cuts (d) at point (0; 3) For $x > 0$, (C) is above (d)	1	
		For $x < 0$, (C) is below (d).		
	3-d-	According to the graph $f''(-2) = 0$,		
		Over $]-\infty$; -2[: f' is decreasing then f''(x) < 0 Over $]-2$; + ∞ [: f' is increasing then f''(x) > 0		
		The point I(-2; f(-2)= $1 - \frac{2}{e^2}$) is a point of inflection of (C).		
	4-a-	(T) is above the axis of abscissas, $X = \infty + \infty$		
		then f'(x) > 0 for every x, hence f is strictly increasing over R $\frac{f'(x)}{f(x)} + \infty$	1⁄2	
		$\Gamma(\mathbf{x})\Big _{-\infty}$		
		У ф		
4-t		(d)		
	4-b-		1 1/2	
		-3/1 × X		
		1		

4-c-
$$A = \int_0^1 x e^x dx = (x-1)e^x \Big|_0^1 = 1 \ u^2 \text{ then } A = 4 \ \text{cm}^2.$$