دورة سنة ¢ . . \times الاستثنائية	امتُحانات الثشهادة الثّانوية فرع علوم الحياة	العامة	وزارة التربية والتيليم العالثي المديريـة (لعامـة للتربية دائرة الامتحانـات
الرقم : :	مسابقة في الرياضيات المدة : ساعتان		عدد المسائل : اربع

I- (3.5 points).

In the plane referred to a direct orthonormal system $(O ; \vec{u}, \vec{v})$, consider the points

A, B and M of affixes $-1,4$ and z respectively, and let M^{\prime} be the point of affix z^{\prime}
such that $z^{\prime}=\frac{z-4}{z+1} \quad(z \neq-1)$.

1) In the case where $z=1+i$, write z^{\prime} in its algebraic form, and give its exponential form.
2) Determine the values of z for which $z^{\prime}=z$.
3) a- Give a geometric interpretation of $|z+1|$, and of $|z-4|$.
b - Find, when $\left|z^{\prime}\right|=1$, the line on which the point M moves.

II- (3.5 points).

In the space referred to a direct orthonormal system
$(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}}, \overrightarrow{\mathrm{k}})$, consider the cube OABCDEFG such that: $\mathrm{A}(1 ; 0 ; 0), \mathrm{B}(1 ; 1 ; 0)$ and $\mathrm{F}(1 ; 1 ; 1)$. Designate by P, Q and R the midpoints of the segments [DG], [DE] and [AE] respectively.

1) a-Show that $2 x+2 y+2 z-3=0$ is an equation of the plane (PQR).
b- Prove that the plane (PQR) passes through the midpoint of [AB].
c - Prove that the planes (PQR) and (BEG) are parallel.
2) a- What is the nature of quadrilateral EGCA ?
b - Let M be a variable point on the line (AC).
Show that $\overrightarrow{\mathrm{AM}} \times \overrightarrow{\mathrm{EF}}=\overrightarrow{\mathrm{AM}} \times \overrightarrow{\mathrm{GF}}$.

III-(4 points).

A multiple choice test is made up of three independent questions.
The candidate is
required to answer all the questions .Each question has two suggested answers out of
which only one is correct.

A candidate answers randomly each of these three questions.

1) a-Show that the probability that he answers the three questions correctly is equal to $\frac{1}{8}$.
b- Consider the event E : < Among the three answers of the candidate, exactly
two are correct ».
Calculate the probability of E .
2) The test is marked as follows : $\mathbf{+ 5}$ points for each correct answer, and - $\mathbf{3}$ points
for each wrong answer.
Designate by X the random variable that is equal to the total mark obtained by
the candidate upon answering the questions of this test.
a- Determine the 4 possible values of X .
b- Determine the probability distribution of X , and calculate the mean (expected value) $\mathrm{E}(\mathrm{X})$.

IV-(9 points).
Consider the differential equation (E) : y" $-2 \mathrm{y}^{\prime}+\mathrm{y}=\mathrm{x}+1$.

1) Let $y=z+x+3$.
a- Write a differential equation (E^{\prime}) satisfied by z, and solve (E^{\prime}).
b- Deduce the general solution of (E).
2) Let f be a particular solution of (E) . The curve (T), in the adjacent figure, is the representative curve of the function f^{\prime} the derivative of f.
Show that $\mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}+\mathrm{x}+3$.

Designate by (C) the representative curve of the function f in an orthonormal ${ }^{1}$ system $(\mathrm{O} ; \overrightarrow{\mathrm{i}}, \overrightarrow{\mathrm{j}})$; unit 2cm.
3) a- Calculate $f(1)$ and $\lim _{x \rightarrow+\infty} f(x)$.
b- Calculate $\lim _{x \rightarrow-\infty} f(x)$, and show that the line (d) of equation $y=x+3$ is an asymptote of (C).
c - Determine, according to the values of x , the relative positions of (C) and (d).
d- Verify that $\mathrm{I}\left(-2 ; 1-\frac{2}{\mathrm{e}^{2}}\right)$ is a point of inflection of the curve (C) .
4) a- Verify that f is strictly increasing on IR , and set up its table of variations.
b- Draw (d) and (C).
c- Calculate , in cm^{2}, the area of the region bounded by the curve (C), the

$$
\text { line (} d \text {) and the lines of equations } x=0 \text { and } x=1
$$

Answer Key

		$\mathrm{E}(\mathrm{X})=-9 / 8-3 / 8+21 / 8+15 / 8=3$	
IV	1-a-	$y^{\prime \prime}-2 y^{\prime}+y=x+1$ with $y^{\prime}=z^{\prime}+1$ and $y^{\prime \prime}=z^{\prime \prime}$ then $z^{\prime \prime}-2 z^{\prime}+z=0$. Characteristic equation $r^{2}-2 r+1=0 ; r_{1}=r_{2}=1$ and $z=\left(c_{1} x+c_{2}\right) e^{x}$	$11 / 2$
	1-b-	The general solution of (E) is $\mathrm{y}=\left(\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\right) \mathrm{e}^{\mathrm{x}}+\mathrm{x}+3$.	1/2
	2	According to the graph: $\mathrm{f}^{\prime}(-1)=1$ and $\mathrm{f}^{\prime}(0)=2$ $\begin{aligned} & \mathrm{f}^{\prime}(\mathrm{x})=\mathrm{c}_{1} \mathrm{e}^{\mathrm{x}}+\left(\mathrm{c}_{1} \mathrm{x}+\mathrm{c}_{2}\right) \mathrm{e}^{\mathrm{x}}+1 \\ & \mathrm{f}^{\prime}(-1)=1 \text { gives } \frac{\mathrm{c}_{2}}{\mathrm{e}}+1=1 \text { so } \mathrm{c}_{2}=0, \\ & \mathrm{f}^{\prime}(0)=2 \text { gives } \mathrm{c}_{1}+\mathrm{c}_{2}+1=2 \text { so } \mathrm{c}_{1}=1, \\ & \mathrm{f}(\mathrm{x})=\mathrm{xe}^{\mathrm{x}}+\mathrm{x}+3 . \end{aligned}$	1
	3-a-	$f(1)=e+4 \approx 6.738, \lim _{x \rightarrow+\infty} f(x)=+\infty$.	1/2
	3-b-	$\begin{aligned} & \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \mathrm{xe}^{x}+\lim _{x \rightarrow-\infty}(x+3)=0-\infty=-\infty . \\ & \lim _{x \rightarrow-\infty}[f(x)-(x+3)]=\lim _{x \rightarrow-\infty} \mathrm{xe}^{x}=0, \text { then the line (d) of equation } \\ & y=x+3 \text { is an asymptote of }(C) . \end{aligned}$	1
	3-c-	$f(x)-(x+3)=x^{x}$ For $\mathrm{x}=0$, (C) cuts (d) at point $(0 ; 3)$ For $\mathrm{x}>0$, (C) is above (d) For $\mathrm{x}<0,(\mathrm{C})$ is below (d).	1
	3-d-	According to the graph $\mathrm{f}^{\prime \prime}(-2)=0$, Over $]-\infty ;-2\left[: f^{\prime}\right.$ is decreasing then $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$ Over $]-2 ;+\infty\left[: f^{\prime}\right.$ is increasing then $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$ The point $\mathrm{I}\left(-2 ; \mathrm{f}(-2)=1-\frac{2}{\mathrm{e}^{2}}\right)$ is a point of inflection of (C).	1/2
	4-a-	(T) is above the axis of abscissas, then $f^{\prime}(x)>0$ for every x, hence f is strictly increasing over R	1/2
	4-b-		$11 / 2$

$$
\begin{array}{|l|l|l}
\hline & 4-\mathrm{c}- & \mathrm{A}=\int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=\left.(\mathrm{x}-1) \mathrm{e}^{\mathrm{x}}\right|_{0} ^{1}=1 \mathrm{u}^{2} \text { then } \mathrm{A}=4 \mathrm{~cm}^{2} .
\end{array}
$$

