First exercise (6.5 points)

so:
$4=\frac{\frac{x^{2}}{V^{2}}}{\frac{(2-x)}{V} \frac{(1-x)}{V}}$. The calculation gives: $x^{2}=4\left(2+x^{2}-3 x\right)$.
$3 x^{2}-12 x+8=0$. The solution of this equation gives two values :
$x^{\prime}=3.15>1$, rejectable value and $x^{\prime \prime}=0.845$ acceptable value, the amount of ester at infinity is then:
$\mathrm{n}_{\text {ester }}=0.845 \mathrm{~mol}$.
The addition of an excess of carboxylic acid shifts the equilibrium in the forward direction to form more ester.
In the presence of a big amount of the acid the yield of the reaction tends to its maximum value ($\mathrm{n}_{\text {ester }}$ tends to 1 , and the reaction becomes approximately total).

Second exercise (7.5 points)

	Expected Answers
I-	
1- The orange colour means that the pH of the sol	
values: 3.1 and 4.4. This value is $>-\log \mathrm{C}_{1}=2$,	
dissociation of ethanoic acid is partial and conseq	
2-	
a)	

b) The equation of the predominant reaction is the reaction that takes place between the stronger acid and the stronger base introduced in considerable amounts;

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{HO}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} .
$$

c) $K_{R}=10^{\Delta p K a}$.
$\Delta \mathrm{pKa}=\mathrm{pKa}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{HO}^{-}\right)-\mathrm{pKa}\left(\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COO}^{-}\right)=14-4.75$ $K_{R}=10^{9.25} \gg 10^{4}$. The reaction is total.
d) The relation $\mathrm{pH}=\mathrm{pKa}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ permits to calculate the ratio $\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$.
$\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=8.4-4.75=3.65$, where: $\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \approx 4467$. The concentration of the acid is practically null. The acid had almost, reacted
completely.
II -
1- The equipment: 10 mL volumetric pipet, beaker and pipet filler in order to take $\mathrm{V}_{\mathrm{a}} .25 \mathrm{~mL}$ graduated burette, 100 mL beaker, magnetic stirrer and magnetic bar in order to perform the titration.
2- At equivalence, we have:
$\mathrm{n} \mathrm{CH}_{3} \mathrm{COOH}$ in $\mathrm{V}_{\mathrm{a}}=\mathrm{n} \mathrm{HO}^{-}$in 10.1 mL of basic solution. Where in a solution: n solute $(\mathrm{mol})=\mathrm{C}\left(\mathrm{mol} . \mathrm{L}^{-1}\right) \times \mathrm{V}$ solution (L) :
The concentration of ethanoic acid in solution (S) is:

$$
\mathrm{C}_{(\mathrm{S})}=\frac{0.1 \times 10.1 \times 10^{-3}}{10 \times 10^{-3}}=0.101 \mathrm{~mol} . \mathrm{L}^{-1}
$$

3- The concentration of vinegar is $=1.01 \mathrm{~mol} . \mathrm{L}^{-1}$ because solution (S) is obtained by diluting the vinegar 10 times.
The mass of 100 mL of vinegar $=100 \times 1.02=102 \mathrm{~g}$.
This mass contains $\mathrm{n}=1.01 \times 100 \times 10^{-3}=0.101 \mathrm{~mol}$,so $\mathrm{m}=0.101 \times 60=6.06 \mathrm{~g}$
The degree of acidity is then $6.06 \times \frac{100}{102}=5.94^{\circ}$.
Third exercise (6 points)

Expected Answers	Comments
I- 1- (4) and (5) 1-Propyl ethanoate 2- Functional isomers, because the first is an alcohol and the second is an ether. 3- This isomer should be an alkyl ethanoate. The last one has 3 atoms of carbon. The formula is then : II- 1- The contents of flasks (a) and (b) are reducing agents. Only compound (1) (aldehyde) and compound (2) (secondary alcohol) are reducing agents. Since flask (a) gives a positive test with DNPH, therefore it contains in its molecule a carbonyl group. So it is propanal. The content of flask (b) is then a secondary alcohol : 2 - butanol.	

III-
1-In order to prepare (3), starting from ethanol, the equation of the reaction is:
$2 \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$.
2- $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CHO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}+\mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O}$

