

so:	
$\frac{x^2}{2}$	
$4 = \frac{\overline{V^2}}{(2-x)(1-x)}$. The calculation gives: $x^2 = 4(2 + x^2 - 3x)$.	
V = V	
$3x^2 - 12x + 8 = 0$. The solution of this equation gives two values :	
x' = 3.15 > 1, rejectable value and $x'' = 0.845$ acceptable value, the	
amount of ester at infinity is then:	
$n_{ester} = 0.845 \text{ mol.}$	
The addition of an excess of carboxylic acid shifts the equilibrium in	
the forward direction to form more ester.	
In the presence of a big amount of the acid the yield of the reaction	
tends to its maximum value (n _{ester} tends to 1, and the reaction	
becomes approximately total).	

Second exercise (7.5 points)

completely.

**	
ш	_

 The equipment: 10 mL volumetric pipet, beaker and pipet filler in order to take V_a. 25 mL graduated burette, 100 mL beaker, magnetic stirrer and magnetic bar in order to perform the titration.
At equivalence, we have:

n CH₃COOH in V_a = n HO⁻ in 10.1 mL of basic solution. Where in a solution: n solute (mol) = C (mol.L⁻¹)x V solution (L): The concentration of ethenois acid in solution (S) is:

The concentration of ethanoic acid in solution (S) is:

 $C_{(S)} = \frac{0.1 \times 10.1 \times 10^{-3}}{10 \times 10^{-3}} = 0.101 \text{ mol.L}^{-1}.$

3- The concentration of vinegar is = 1.01 mol.L^{-1} because solution (S) is obtained by diluting the vinegar 10 times. The mass of 100 mL of vinegar = $100 \times 1.02 = 102\text{ g}$.

This mass contains $n=1.01 \times 100 \times 10^{-3} = 0.101 \text{ mol,so } m=0.101 \times 60 = 6.06 \text{ g}$

The degree of acidity is then $6.06 \times \frac{100}{102} = 5.94^{\circ}$.

Third exercise (6 points)

III-1-In order to prepare (3), starting from ethanol, the equation of the reaction is: $2 \text{ CH}_3 - \text{CH}_2 - \text{OH} \rightarrow \text{CH}_3 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH}_3 + \text{H}_2\text{O}.$ 2- CH₃ - CH₂ - CHO + ¹/₂ O₂ \rightarrow CH₃ - CH₂ - COOH CH₃ - CH₂ - COOH + NH₃ \rightarrow CH₃ - CH₂ - COOH CH₃ - CH₂ - COOH + NH₃ \rightarrow CH₃ - CH₂ - CO - NH₂ + H₂O