	الثشهادة المتوسطة	وزارة التربية والتتعليم العالّي المديرية العامـة للتربية دائرة الامتحانـات
الرقم: الاسم:	مسابقة في مـادة الفيزياء المدة: ساعة واحدة	

This exam consists of three obligatory exercises written on two pages. Non- programmable calculators are allowed.

First exercise ($\mathbf{7} \mathrm{pts}$) Image given by a converging lens

The object of this exercise is to determine the characteristics of the image A' B^{\prime} of an object AB , given by a converging lens (L).
The diagram below shows a converging lens (L), its optical axis $x^{\prime} \mathrm{Ox}$, its two foci F and F^{\prime} and the object AB .

I) Construction of the image $A^{\prime} \mathbf{B}^{\prime}$

1) Reproduce, on the graph paper the above diagram with the same given scale.
2) Construct, by tracing two particular luminous rays, the image A ' of A.
3) Specify, with justification, the position of the image C ' of C .
4) Determine, by tracing only one particular ray, the image B' of B.
II) Characteristics of $\mathbf{A}^{\prime} \mathbf{B}^{\prime}$
5) Give, with justification, the nature of $A^{\prime} B^{\prime}$.
6) Is $A^{\prime} \mathrm{B}^{\prime}$ erect or inverted with respect to AB ?
7) Determine the length of the image $A^{\prime} B$ '.
8) a) The image $A^{\prime} \mathrm{B}^{\prime}$ of AB may be collected on a screen. Why?
b) At what distance d from (L) should this screen be placed?

Second exercise (7 pts) Functioning of a lamp

In order to study the functioning of a lamp (L), we consider the following components:

- A DC generator (G) of adjustable voltage ;
- The lamp (L) of rated voltage 9 V ;
- An ammeter (A) ;
- A voltmeter (V) ;
- Connecting wires.

1) Draw a circuit diagram, formed of the preceding components, that allows us to measure the values of the voltage U across (L) as well as the current I through it.
2) We vary the voltage delivered by (G) from 0 to 3 V . We record the values of U and I displayed respectively by (V) and (A). The results are shown in the table below :

$\mathrm{U}(\mathrm{V})$	0	1	1,5	2	3
$\mathrm{I}(\mathrm{A})$	0	0.1	0.15	0.2	0.3

a) Trace the characteristic Current-Voltage curve of the lamp.

Scale: on the ordinate axis 1 cm for 1 V and on the abscissa axis 1 cm for 0.1 A .
b) The lamp may be considered in this case as a resistor. Why?
c) Deduce the resistance R of the lamp.
3) Now, we vary U between 3 V and 9 V and we take the corresponding values of I. The results are shown in the following table:

$\mathrm{U}(\mathrm{V})$	4	5	6	7	8
$\mathrm{I}(\mathrm{A})$	0.35	0.39	0.43	0.46	0.49
$\frac{\mathrm{U}}{\mathrm{I}}$					

a) Copy the table on your answer sheet and fill the empty boxes.
b) The lamp cannot be considered in this case as a resistor. Why ?

Third exercise ($6 \mathbf{p t s}$) Density and flotation

The object of this exercise is to study the influence of the density of a liquid on the flotation of a solid immersed in this liquid.
In order to do this, we consider a solid cube (S), of mass $\mathrm{m}=0.9 \mathrm{~kg}$ and of side $\mathrm{a}=10 \mathrm{~cm}$.
Given: g = $10 \mathrm{~N} / \mathrm{kg}$.

I- Characteristics of (S)

1) Verify that the volume of (S) is $\mathrm{V}=10^{-3} \mathrm{~m}^{3}$.
2) Deduce that the density of (S) is $\rho=900 \mathrm{~kg} / \mathrm{m}^{3}$.
3) Calculate the weight W of (S).

II- (S) is in oil

We immerse (S) completely in oil of density $\rho_{1}=800 \mathrm{~kg} / \mathrm{m}^{3}$.

1) Calculate the value F_{1} of the Archimedes up thrust exerted by oil on (S).
2) By comparing W and F_{1}, deduce that the solid sinks to the bottom of the liquid container.

III- (S) is in water

We repeat the experiment by immersing (S) completely in water of density $\rho_{2}=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

1) Calculate the value F_{2} of the Archimedes up thrust exerted by water on (S).
2) Deduce that the solid (S) floats on the surface of water.

IV- Condition for flotation

By comparing ρ_{1} and ρ_{2} to ρ, Give the condition that must be satisfied by the density of a solid and the density of a liquid for a solid to float on the surface of the liquid.

	وزارة التربيةّ والتعليم العاللي المديريـة العامـة للتربية دائرة الامتحانـات
مسابقة في مادة الفيزباء	مشروع معيار التصيح

First exercise (7 points)

3.a)	U (V)	4	5	6	7	8	1 pt
	I (A)	0.35	0.39	0.43	0.46	0.49	
	$\frac{\mathrm{U}}{\mathrm{I}}$	11.4	12.8	14.0	15.2	16.3	
3. b)	Since the ratio	is not co					0.5 pt
Third exercise (6 ts)							
Part of the \mathbf{Q}	Answer						Mark
I.1)	$\begin{aligned} & \mathrm{V}=\mathrm{a}^{3}(0.25) \\ & \mathrm{V}=\left(10^{-1}\right)^{3}=10^{-3} \mathrm{~m}^{3}(0.25) \end{aligned}$						0.5
I.2)	$\begin{aligned} & \rho=\mathrm{m} / \mathrm{V}(0.5) \\ & \rho=0.9 / 10^{-3}=900 \mathrm{~kg} / \mathrm{m}^{3}(0.25) \end{aligned}$						0.75
I.3)	$\begin{aligned} & \mathrm{W}=\mathrm{m} . \mathrm{g}(0.25) \\ & \mathrm{W}=0.9 \times 10=9 \mathrm{~N}(0.5) \\ & \hline \end{aligned}$						0.75
II.1)	$\begin{aligned} & \hline \mathrm{F}_{1}=\rho_{1} \cdot \mathrm{v.g}(0.25) \\ & \mathrm{F}_{1}=800 \times 10^{-3} \times 10=8 \mathrm{~N}(0.5) \end{aligned}$						0.75
II.2)	$\mathrm{W}=9 \mathrm{~N}$ and $\mathrm{F}_{1}=8 \mathrm{~N}$ $\Rightarrow \mathrm{W}>\mathrm{F}_{1}$: The solid remains at the bottom of the container (0.5)						0.5
III.1)	$\begin{aligned} & \hline \mathrm{F}_{2}=\rho_{2} \cdot \mathrm{v} . \mathrm{g}(0.25) \\ & \mathrm{F}_{2}=1000 \times 10^{-3} \times 10=10 \mathrm{~N}(0.5) \\ & \hline \end{aligned}$						0.75
III.2)	$\mathrm{F}_{2}=10 \mathrm{~N}$ and $\mathrm{W}=9 \mathrm{~N}$ $\Rightarrow \mathrm{F}_{2}>\mathrm{W}$: The solid floats on the surface of the liquid (0.5)						0.5
IV)	$\begin{aligned} & \rho_{1}=800 \mathrm{~kg} / \mathrm{m}^{3} \text { and } \rho=900 \mathrm{~kg} / \mathrm{m}^{3} \\ & \Rightarrow \rho>\rho_{1}: \text { the solid sinks to the bottom (0.5) } \\ & \rho_{2}=1000 \mathrm{~kg} / \mathrm{m}^{3} \text { and } \rho=900 \mathrm{~kg} / \mathrm{m}^{3} \\ & \Rightarrow \rho<\rho_{2}: \text { The solid floats on the surface (0.5) } \end{aligned}$ Thus a solid floats on the surface of a liquid if its density is smaller than the density of the liquid (0.5)						1.5

