دورة سنة ۲۰۰۸ العادية	الشهادة المتوسطة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الفيزياء المدة: ساعة واحدة	

This exam consists of three obligatory exercises written on two pages. Non- programmable calculators are allowed.

<u>First exercise</u> (7 pts) Image given by a converging lens

The object of this exercise is to determine the characteristics of the image A'B' of an object AB, given by a converging lens (L).

The diagram below shows a converging lens (L), its optical axis x'Ox, its two foci F and F' and the object AB.

I) Construction of the image A'B'

- 1) Reproduce, on the graph paper the above diagram with the same given scale.
- 2) Construct, by tracing two particular luminous rays, the image A' of A.
- 3) Specify, with justification, the position of the image C' of C.
- 4) Determine, by tracing only one particular ray, the image B' of B.

II) Characteristics of A'B'

- 1) Give, with justification, the nature of A'B'.
- 2) Is A'B' erect or inverted with respect to AB?
- 3) Determine the length of the image A'B'.
- a) The image A'B' of AB may be collected on a screen. Why ?b) At what distance d from (L) should this screen be placed?

Second exercise (7 pts) Functioning of a lamp

In order to study the functioning of a lamp (L), we consider the following components:

- A DC generator (G) of adjustable voltage ;
- The lamp (L) of rated voltage 9 V;
- An ammeter (A);
- A voltmeter (V);
- Connecting wires.
 - 1) Draw a circuit diagram, formed of the preceding components, that allows us to measure the values of the voltage U across (L) as well as the current I through it.
 - 2) We vary the voltage delivered by (G) from 0 to 3 V. We record the values of U and I displayed respectively by (V) and (A). The results are shown in the table below :

U (V)	0	1	1,5	2	3
I (A)	0	0.1	0.15	0.2	0.3

- a) Trace the characteristic Current-Voltage curve of the lamp.
 - Scale: on the ordinate axis 1cm for 1 V and on the abscissa axis 1cm for 0.1 A.
- b) The lamp may be considered in this case as a resistor. Why?
- c) Deduce the resistance R of the lamp.
- **3**) Now, we vary U between 3 V and 9 V and we take the corresponding values of I. The results are shown in the following table:

U (V)	4	5	6	7	8
I (A)	0.35	0.39	0.43	0.46	0.49
<u>U</u>					
Ι					

a) Copy the table on your answer sheet and fill the empty boxes.

b) The lamp cannot be considered in this case as a resistor. Why ?

Third exercise (6 pts) Density and flotation

The object of this exercise is to study the influence of the density of a liquid on the flotation of a solid immersed in this liquid.

In order to do this, we consider a solid cube (S), of mass m = 0.9 kg and of side a = 10 cm. Given: g = 10 N/kg.

I- Characteristics of (S)

- 1) Verify that the volume of (S) is $V = 10^{-3} \text{ m}^3$.
- 2) Deduce that the density of (S) is $\rho = 900 \text{ kg/m}^3$.
- **3**) Calculate the weight W of (S).

II- (S) is in oil

We immerse (S) completely in oil of density $\rho_1 = 800 \text{ kg/m}^3$.

- 1) Calculate the value F_1 of the Archimedes up thrust exerted by oil on (S).
- 2) By comparing W and F_1 , deduce that the solid sinks to the bottom of the liquid container.

III- (S) is in water

We repeat the experiment by immersing (S) completely in water of density $\rho_2 = 1000 \text{ kg/m}^3$.

- 1) Calculate the value F_2 of the Archimedes up thrust exerted by water on (S).
- 2) Deduce that the solid (S) floats on the surface of water.

IV- Condition for flotation

By comparing ρ_1 and ρ_2 to ρ , Give the condition that must be satisfied by the density of a solid and the density of a liquid for a solid to float on the surface of the liquid.

الشهادة المتوسطة - دورة سنة ٢٠٠٨ العادية	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
مسابقة في مادة الفيزياء	مشروع معيار التصحيح

First exercise (7 points)					
Part of	Answer				
the Q					
1. 1.	i) The set of the 1 st next inclusion (0,5)	0.5			
10	1) Trace of the 1 [°] particular ray (0.5) ii) Trace of the 2^{nd} menticular ray (0.5)	15			
1.2	1) Frace of the 2 particular ray (0.5) iii) Construction of Λ^2 : intersection of two emergent rays (0.5)				
	In Construction of A \cdot intersection of two emergent rays (0.5)				
I. 3	on the optical axis	1			
Ι 4	Trace	1			
II.1	A'B' is a real image as it is behind L or	1			
II. 2	A'B' is inverted with respect to AB	0.5			
II. 3	II. 3. $A'B' = 3cm$	0.5			
II. 4 a)	Since it is real	0.5			
II. 4 b)	A'B' is at 7, 5cm from L (0.5)	0.5			
	Second exercise (7 points)				
Part of	A newor	Mork			
the Q					
1)		1.5 pt			
2.a)		2 pts			
2.b)	Since the characteristic curve is a straight line passing through the origin.	1 pt			
2.c)	$R = \frac{U}{I} = 10 \Omega$. (or graphically by calculating the slope of the straight line)	1 pt			

	U (V)	4	5	6	7	8		
3.a)	I (A)	0.35	0.39	0.43	0.46	0.49		1 pt
	$\frac{\mathrm{U}}{\mathrm{I}}$	11.4	12.8	14.0	15.2	16.3		
3. b)	Since the ratio $\frac{U}{I}$ is not constant.							0.5 pt
			Third	exercise (6 ts)			
Part of the Q	Answer							Mark
I.1)	$V = a^{3} (0.25)$ $V = (10^{-1})^{3} = 10^{-3} \text{ m}^{3}(0.25)$							0.5
I.2)	$ \begin{array}{l} \rho = m/V \ (0.5) \\ \rho = \ 0.9 \ / \ 10^{-3} = 900 \ \text{kg} \ / \text{m}^3 \ (0.25) \end{array} $						0.75	
I.3)	$W=m.g (0.25) W = 0.9 \times 10 = 9 N (0.5)$						0.75	
II.1)	$F_1 = \rho_1.v.g (0.25)$ $F_1 = 800 \times 10^{-3} \times 10 = 8 \text{ N} (0.5)$						0.75	
II.2)	$W = 9N \text{ and } F_1 = 8N$							0.5
	\rightarrow w > r ₁ . The solid remains at the bottom of the container (0.3) $F_2 = \rho_2 v g (0.25)$						0.5	
III.1)	$F_2 = 1000 \times 10^3 \times 10 = 10N$ (0.5)					0.75		
III.2)	$F_2 = 10N \text{ and } W = 9N$							o -
,	$f \Rightarrow F_2 > W$: The solid floats on the surface of the liquid (0.5)						0.5	
	$rac{1}{2}$ $rac{$							
	\rightarrow p p ₁ , we bound black to the bottom (0.5)							
IV)	$\rho_2 = 1000 \text{ kg} / \text{m}^3 \text{ and } \rho = 900 \text{ kg} / \text{m}^3$							15
1 V)	$\Rightarrow \rho < \rho_2$: The solid floats on the surface (0.5)							1.3
	Thus a solid floats on the surface of a liquid if its density is smaller than the density of the liquid (0.5)							