الاسم :
 مسابقة في الرياضيات
 المدة :ساعتان

ملاحـظة يُّسمح بإستعمال آلة حاسبة غبر قابلة للبرمجة أو اختنزان المعلومات أو أو رسم البيانات.
يسنطيع المُرشح الإجابة بالترتبب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (2 points)

A survey was conducted on 50 smokers to study their daily consumption of cigarettes.
The graph below represents the increasing cumulative frequency polygon of these smokers.

1) Copy and complete the following frequency table of this distribution:

Number of cigarettes	$[0 ; 5[$			$[20 ; 25[$			$[35 ; 40]$	
Number of smokers	5		7		10			2

2) Determine the median of this distribution, to the nearest unit, and give a significance of the value thus obtained.

II- (4 points)

An employee receives the amount of 2000000 LL .
On the first day, he spends 20% of this amount.
On the second day he spends 20% of the amount remaining with him from the previous day, and so on for every new day.
Designate by $U_{n}(n \geq 1)$ the amount, in LL, left with this employee at the end of the nth day.

1) Verify that $U_{1}=1600000$.
2) Prove that $\left(U_{n}\right)$ is a geometric sequence whose ratio is to be determined.
3) Calculate U_{n} in terms of n.
4) At the end of which day, the amount left with this employee would become for the first time less than 500000 LL?

III- (4points)

A bag contains seven balls:
one red ball carrying the number n
two yellow balls each carrying the number -5
four green balls each carrying the number 4 .
Two balls are drawn, simultaneously and at random, from this bag.

1) Prove that the probability of drawing one red ball and one green ball is equal to $\frac{4}{21}$.
2) Calculate the probability of drawing two green balls.
3) Calculate the probability of drawing two balls having the same colour.
4) Let X designate the random variable that is equal to the product of the two numbers carried by the two drawn balls.
a- Justify that the possible values of X are: -5 n ; 4 n ; -20 ; 16 ; 25.
b- Determine the probability distribution of X .
c- Determine the value of n for which the mathematical expectation $E(X)$ is equal to -1 .

IV- (10 points)

A- Let f be the function that is defined on $\left[-1 ;+\infty\left[\right.\right.$ by $f(x)=x-2-2 \mathrm{xe}^{-\mathrm{x}}$, and let (C) be its representative curve in an orthonormal system ($\mathrm{O} ; \mathrm{i}, \mathrm{j}$).
1 a- Calculate $\lim _{x \rightarrow+\infty} f(x)$, and prove that the line (d) of equation $y=x-2$ is an asymptote of (C).
b- Study, according to the values of x, the relative positions of (C) and (d).
c- Calculate $f(0)$ and $f(-1)$.
2) Given below the table of signs of $f^{\prime}(x)$.

x	-1		0.3		$+\infty$
$\mathrm{f}^{\prime}(\mathrm{x})$		-	0	+	

Set up the table of variations of f .
3) a- Draw (d) and (C).
b- Show, graphically, that the equation $f(x)=0$ has a unique positive solution α. Verify that $2.4<\alpha<2.5$.

B- In all what follows, suppose that $\alpha=2.45$.
A factory produces a certain chemical liquid.
The function M_{C}, defined on $[0 ; 10]$ by $\mathrm{M}_{\mathrm{C}}(\mathrm{x})=1+2(1-\mathrm{x}) \mathrm{e}^{-\mathrm{x}}$, expresses the daily marginal cost of this production .
x is expressed in thousands of liters, and $\mathrm{M}_{\mathrm{C}}(\mathrm{x})$ in millions LL.
The fixed cost of this production amounts to 2 million LL.

1) Prove that the total cost function C is expressed by $C(x)=x+2+2 x e^{-x}$.
2) The whole production is completely sold at the price of 2000 LL per liter.
a- Prove that the profit function is expressed by $P(x)=x-2-2 x e^{-x}$.
b- Determine the quantity that should be produced daily by this factory in order that the profit is zero.
Does the factory achieve a profit if the daily production of this liquid is 2000 liters? Justify your answer.

	4-c-	$\begin{aligned} & E(X)=\frac{1}{21}(-160-10 n+16 n+96+25)=\frac{1}{21}(6 n-39) . \\ & E(X)=-1 ; 6 n-39=-21 ; n=3 . \end{aligned}$	1
	A. 1-a-	$\begin{aligned} & f(x)=x-2-2 x e^{-x} ; D_{f}=[-1 ;+\infty[\\ & \lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(x-2-\frac{2 x}{e^{x}}\right)=+\infty \\ & \lim _{x \rightarrow+\infty}[f(x)-(x-2)]=\lim _{x \rightarrow+\infty} \frac{-2 x}{e^{x}}=0 .(d): y=x-2 \text { is an asymptote of }(C) . \end{aligned}$	2
	A. 1-b	$f(x)-(x-2)=-2 \mathrm{xe}^{-x}$ If $x=0$, then (C) cuts (d) at point $(0 ;-2)$ If $\mathrm{x}<0$, then (C) is above (d) If $\mathrm{x}>0$, then (C) is below (d).	$11 / 2$
	A. $1-\mathrm{c}$	$\mathrm{f}(0)=-2$ and $\mathrm{f}(-1)=2.436$.	1
	A. 2	x -1 0.3 $+\infty$ $\mathrm{f}^{\prime}(\mathrm{x})$ 0 + 2.436 - -2.144 $+\infty$ $\mathrm{f}(\mathrm{x})$ \bullet	$11 / 2$
\mathbb{y}	A. 3-a-		$21 / 2$
	A. 3-b-	Over $[0 ;+\infty[,(C)$ cuts the axis of abscissas at a unique point Hence $f(x)=0$ has a unique solution α. $f(2.4)=-0.0354 ; f(2.5)=0.0895, f(2.4)<0 \text { and } f(2.5)>0 \text { then } 2.4<\alpha<2.5$	2
	B. 1	$\begin{aligned} & \alpha=2,45 \\ & C^{\prime}(x)=1+2 e^{-x}-2 x^{-x}=1+2(1-x) e^{-x} \text { and } C(0)=2 \end{aligned}$	$21 / 2$

	Therefore $\mathrm{C}(\mathrm{x})$ is the total cost. $\bullet \mathbf{O R}: \mathrm{C}(\mathrm{x})$ is an anti-derivative of $\mathrm{M}_{\mathrm{C}}(\mathrm{x})$ that takes the value 2 at $\mathrm{x}=0$.	
B.	Selling price of a unit is $2000 \times 1000=2$ millions. Selling price of x units is 2 x. $2-\mathrm{a}-$ $\mathrm{P}(\mathrm{x})=2 \mathrm{x}-\left(\mathrm{x}+2+2 \mathrm{x} \mathrm{e}^{-\mathrm{x}}\right)=\mathrm{x}-2-2 \mathrm{x} \mathrm{e}^{-\mathrm{x}}$.	2
B	$\mathrm{P}(\mathrm{x})=0$ for $\mathrm{f}(\mathrm{x})=0$ and $\mathrm{x} \geq 0$, hence $\mathrm{x}=2.45$. The profit vanishes for a production of 2450 liters. For a production of 2000 liters $\mathrm{x}=2$ and $\mathrm{f}(\mathrm{x})=-0.541$. 2-b-	$21 / 2$

