

فرع الآداب والإنسانيات

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الإلتزام بترتيب المسائل الواردة في المسابقة).

I-(10 points)

The curve (C), drawn in the orthonormal system below, is the representative curve of a function f.

- 1) Determine $\lim_{\substack{x \to 1 \\ x < l}} f(x)$, $\lim_{\substack{x \to 1 \\ x > l}} f(x)$, $\lim_{\substack{x \to -\infty}} f(x)$ and $\lim_{\substack{x \to +\infty}} f(x)$.
- 2) Set up the table of variations of f.
- 3) What is the number of solutions of the equation f(x) = -5? Justify your answer.
- 4) Solve the inequality f(x) > 0.
- 5) Copy and fill in the blanks using either one of the following symbols: = ; < ; > .
 - f'(-2)0 .
 - f'(-1)0 .
 - f'(0)0 .
 - $f'(3).....0 \quad .$

6) **In this part,** let $f(x) = x - 1 + \frac{4}{x - 1}$.

a-Prove that the line (d) of equation y = x-1 is an asymptote of the curve (C).

b- Write an equation of the line that is tangent to (C) at the point E of abscissa 2.

II-(5 points)

Consider the following propositions:

p: Beirut is a capital.

q : Beirut is overpopulated.

1) Write each of the following propositions in a symbolic language:

a: Beirut is overpopulated and is not a capital.

b : Beirut is not a capital and is not overpopulated.

c: It is not true that Beirut is an overpopulated capital.

d: If Beirut is a capital then it is overpopulated.

e : If Beirut is not overpopulated then it is not a capital.

2) Among the 5 propositions mentioned in the first part, indicate two propositions that are equivalent.

III-(5 points)

Jamil has a capital of 20 000 000 LL. He deposits **half** of his capital in bank A at an **annual interest rate** of 8% compounded **quarterly**, and **the other half** in bank B at an **annual interest rate** of 7.5% compounded **monthly**.

- 1) Determine the amount compounded in Jamil's account in bank A after 5 years.
- 2) Determine the amount compounded in Jamil's account in bank B after 5 years.
- 3) What is the amount of interests gained by his capital during these five years?

LH			MATH	2^{nd}			
session 2004							
Questions			Answers	M			
I	1	phic	$\lim_{\substack{x \to 1 \\ x < l}} f(x) = -\infty \; ; \; \lim_{\substack{x \to 1 \\ x > l}} f(x) = +\infty \; ; \; \lim_{\substack{x \to -\infty \\ x > l}} f(x) = -\infty \text{ and } \lim_{\substack{x \to +\infty \\ x \to +\infty}} f(x) = +\infty$	2			

	2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1/2
	3	The line of equation $y = -5$ cuts (C) at two points, then $f(x) = -5$ has two solutions.	1
	4	f(x) > 0 corresponds to the part of (C) that is above the axis of abscissas, then $x > 1$	1
	5	From the table of variations(or graphically), $f'(-2)>0$, $f'(-1)=0$, $f'(0)<0$ and $f'(3)=0$.	2
	6- a-	$\lim_{x \to -\infty} [f(x) - (x - 1)] = \lim_{x \to -\infty} \frac{4}{x - 1} = 0 \text{ and}$ $\lim_{x \to +\infty} [f(x) - (x - 1)] = \lim_{x \to +\infty} \frac{4}{x - 1} = 0$ Hence (d) is asymptote of (C).	
	6- b-	f'(x) = $1 - \frac{4}{(x-1)^2}$, f(2) = 5, f'(2) = -3 Equation of the tangent : y = (x -2)f'(2) + f(2) = -3x + 11	1 ½
II	1	a: $q \land (\exists p)$ b: $(\exists p) \land (\exists q)$ [OR: $\exists (p \lor q)$] c: $\exists (p \land q)$ [OR: $(\exists p) \lor (\exists q)$] d: $p \Rightarrow q$ e: $(\exists q) \Rightarrow (\exists p)$.	4
III	2	The propositions d and e are equivalent.	1
	1	$C_A = 10\ 000\ 000(1 + \frac{0.08}{4})^{20} = 14,859,474\ LL$	2
	2	$C_B = 10\ 000\ 000(1 + \frac{0.075}{12})^{60} = 14,532,944\ LL$ $I = I_A + I_B = C_A + C_B - 20\ 000\ 000 = 9,392,418\ LL$	2
	3	$I = I_A + I_B = C_A + C_B - 20\ 000\ 000 = 9,392,418\ LL$	1