

عدد المسائل :اربع

ملاحظةً : يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختز ان المعلومات أو رسم البيانات.
يستطيع المرشح الإجابة باللترتيب الذي يناسبه (دون الالتزام بترتيب المسائلل الوارد في المسابقة)

I - (3 points)

In the complex plane referred to a direct orthonormal system $(O ; \vec{u}, \vec{v})$, consider the points A and B such that : $\mathrm{z}_{\mathrm{A}}=1$ and $\mathrm{z}_{\mathrm{B}}=\frac{3}{2}+\mathrm{i} \frac{\sqrt{3}}{2}$.
Let (C) be the circle with center A and radius 1 .

1) a - Write $z_{B}-z_{A}$ in the exponential form.
b - Determine a measure of the angle $(\overrightarrow{\mathrm{u}} ; \overrightarrow{\mathrm{AB}})$.
c - Show that the point B belongs to the circle (C).
2) To every point M, of non-zero affix Z, associate the point M^{\prime} of affix z^{\prime} such that $\mathrm{z}^{\prime}=\frac{\overline{\mathrm{z}}+2}{\overline{\mathrm{z}}}$.
$\mathrm{a}-$ Prove that $\bar{z}\left(\mathrm{z}^{\prime}-1\right)=2$.
b - Deduce, when M^{\prime} moves on the circle (C), that M moves on a circle (T) to be determined.

II - (4 points)

In the space referred to a direct orthonormal system $(O ; \vec{i}, \vec{j}, \vec{k})$, consider the lines (d) and (d^{\prime}) defined by :
(d): $\left\{\begin{array}{l}\mathrm{x}=\mathrm{t}+1 \\ \mathrm{y}=2 \mathrm{t} \\ \mathrm{z}=\mathrm{t}-1\end{array}\right.$ and
$\left(d^{\prime}\right):\left\{\begin{array}{l}x=2 m \\ y=-m+1 \\ z=m+1\end{array}\right.$
(t and m are two real parameters).

1) Prove that (d) and (d') are skew (not coplanar).

2) $a-$ Show that $x-y+z=0$ is an equation of the plane (P) determined by O and (d).
b - Determine the coordinates of E, the point of intersection of (P) and (d^{\prime}).
c - Prove that the straight line (OE) cuts (d).
3) a - Calculate the distance from point O to the line (d).
b - Deduce that the circle in plane (P), with center O and passing through E , is tangent to line (d).

III- (9 points)

Let f be the function defined, on] $0 ;+\infty$ [by $\mathrm{f}(\mathrm{x})=\mathrm{x}+2 \frac{\ln \mathrm{x}}{\mathrm{x}} .(\mathrm{C})$ is the representative curve of f in an orthonormal system $(O ; \vec{i}, \vec{j})$; unit 2 cm .

1) a - Calculate $\lim _{x \rightarrow 0} f(x)$ and give its graphical interpretation.
b - Determine $\lim _{x \rightarrow+\infty} f(x)$ and verify that the line (d) of equation $y=x$ is an asymptote of (C).
$c-$ Study according to the values of x, the relative position of (C) and (d).
2) The table below is the table of variations of the function f^{\prime}, the derivative of f.

$\times \quad 0$		e	$\mathrm{e} \sqrt{\mathrm{e}}$		$+\infty$
f "(x)	-	-	0	+	
$\mathrm{f}^{\prime}(\mathrm{x})$					

a - Show that f is strictly increasing on its domain of definition, and set up its table of variations.
b - Write an equation of the line (D) that is tangent to (C) at the point G of abscissa e .
c - Prove that the curve(C) has a point of inflection L.
$d-$ Show that the equation $f(x)=0$ has a unique root α and verify that $0,75<\alpha<0,76$.
3) Draw (D), (d) and (C).
4) Calculate, in cm^{2}, the area of the region bounded by the curve (C), the line (d) and the two lines of equations $x=1$ et $x=e$.

IV- (4points)

Consider two urns U and V :
U contains three balls numbered 0 and two balls numbered 1 .
V contains five balls numbered 1 to 5 .
A - One ball is drawn randomly from each urn.
Designate by X the random variable that is equal to the product of the two numbers that are marked on the two drawn balls.

1) Prove that $P(X=0)$ is equal to $\frac{3}{5}$.
2) Determine the probability distribution of X.
\mathbf{B} - In this part, the 10 balls that were in urns U and V are all placed in one urn W .
Two balls are drawn, simultaneously and at random, from this urn W.
3) What is the number of possible draws of these 2 balls?
4) Let q designate the product of the too numbers that are marked on the two drawn balls. .
a - Show that the probability $\mathrm{P}(\mathrm{q}=0)$ is equal to $\frac{8}{15}$.
b - Calculate the probability $\mathrm{P}(\mathrm{q}<4)$.

Life sciences		MATH ${ }_{\text {Answers }} 1^{\text {st }}$ SESSION		
		M		
I	1-a		$\mathrm{z}_{\mathrm{B}}-\mathrm{z}_{\mathrm{A}}=\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}=\mathrm{e}^{\mathrm{i} \frac{\pi}{3}}$	
	1-b	$(\overrightarrow{\mathrm{u}} ; \overrightarrow{\mathrm{AB}})=\arg \left(\mathrm{Z}_{\overrightarrow{\mathrm{AB}}}\right)=\arg \left(\mathrm{z}_{\mathrm{B}}-\mathrm{z}_{\mathrm{A}}\right)=\frac{\pi}{3}$		
	1-c	$A B=\left\|z_{B}-z_{A}\right\|=1$ then B belongs to (C).		
	2-a	$\overline{\mathrm{z}}\left(\mathrm{z}^{\prime}-1\right)=\overline{\mathrm{z}}\left(\frac{\overline{\mathrm{z}}+2}{\overline{\mathrm{z}}}-1\right)=\overline{\mathrm{z}}\left(\frac{2}{\overline{\mathrm{z}}}\right)=2 .$		
	2-b	If M^{\prime} moves on (C) then $A M^{\prime}=1$ and $\left\|\mathrm{z}^{\prime}-1\right\|=1$ hence $\|\overline{\mathrm{z}}\|=2$ then $\|\mathrm{z}\|=2$ and M moves on the circle of center O and radius 2 .		

II	1	$\overrightarrow{\mathrm{V}}(1 ; 2 ; 1)$ and $\overrightarrow{\mathrm{V}}^{\prime}(2 ;-1 ; 1) ; \overrightarrow{\mathrm{V}}$ and $\overrightarrow{\mathrm{V}}^{\prime}$ are not collinear, then (d) and (d') are not parallel. Study of the intersection of (d) and (d') : $\mathrm{t}+1=2 \mathrm{~m} ; 2 \mathrm{t}=-\mathrm{m}+1 ; \mathrm{t}-1=\mathrm{m}+1$ Take $2 \mathrm{t}=-\mathrm{m}+1 ; \mathrm{t}-1=\mathrm{m}+1$, we get $\mathrm{t}=1$ and $\mathrm{m}=-1$, these values do not verify $\mathrm{t}+1=2 \mathrm{~m}$. Hence (d) and (d') are skew Or : Let $\mathrm{L}(1 ; 0 ;-1)$ be a point of (d) and $\mathrm{J}(2 ; 0 ; 2)$ be a point of (d') ; $\overrightarrow{\mathrm{LJ}} \cdot\left(\overrightarrow{\mathrm{~V}} \wedge \overrightarrow{\mathrm{~V}}^{\prime}\right)=\left\|\begin{array}{rrr} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{array}\right\|=-12 \neq 0$	
	2-a	By verification : O is a point of (P) (d) lies in (P) because $t+1-2 t+t-1=0$ for every real number t. Or: $\mathrm{M}(\mathrm{x} ; \mathrm{y} ; \mathrm{z})$ belongs to (P) iff $\overrightarrow{\mathrm{OM}} \cdot(\overrightarrow{\mathrm{OL}} \wedge \overrightarrow{\mathrm{V}})=0$ which gives $x-y+z=0$	
	2-b	$2 \mathrm{~m}+\mathrm{m}-1+\mathrm{m}+1=0 ; \mathrm{m}=0$ then $\mathrm{E}(0 ; 1 ; 1)$.	
	2-c	(OE) is a line in plane (P), (OE) and (D) are coplanar and they are not parallel ($\overrightarrow{\mathrm{OE}}$ and $\overrightarrow{\mathrm{V}}$ are not collinear), therefore they intersect. Or : Determine a system parametric equations of (OE) and then prove that it cuts (d).	
	3-a	distance $(\mathrm{O} /(\mathrm{d})$) $=\ldots \ldots=\sqrt{2}$.	
	3-b	$\mathrm{OE}=\sqrt{2}=$ distance $(\mathrm{O} /(\mathrm{d})$) ; then (C$)$ is tangent to (d).	

	1-a	$\lim _{x \rightarrow 0} \ln x=-\infty$ then $\lim f(x)=-\infty ; y^{\prime} y$ is an asymptote of (C).	
	1-b	$\lim _{x \rightarrow+\infty} \frac{\ln x}{x}=0$ then $\lim _{x \rightarrow+\infty} f(x)=+\infty ; \lim _{x \rightarrow+\infty}[f(x)-x]=0$ hence the line (d) of equation $y=x$ is an asymptote of (C) at $+\infty$.	
	1-c	$f(x)-x=2 \frac{\ln x}{x}$ For $x=1$, (C) cuts (d). For $0<\mathrm{x}<1, \mathrm{f}(\mathrm{x})-\mathrm{x}<0$ then (C) is below (d). For $\mathrm{x}>1$, (C) is above (d).	
	2-a	$\mathrm{f}^{\prime}(\mathrm{x}) \geq 1-\frac{1}{\mathrm{e}^{3}}>0$ then f is strictly increasing.	
	2-b	$y=f^{\prime}(e)(x-e)+f(e) \quad ; \quad y=x-e+e+\frac{2}{e}=x+\frac{2}{e}$	
	2-c	f " (x) vanishes for $x=e \sqrt{e}$ and changes sign, then (C) has a point of inflection L of abscissae \sqrt{e}.	
	2-d	f is continuous and changes sign on its domain, $\mathrm{f}(\mathrm{x})=0$ has at least a root α, moreover f is strictly increasing, then α is unique. $\mathrm{f}(0.75) \times \mathrm{f}(0.76)=-0.017 \times 0.377<0$, then $0.75<\alpha<0.76$.	
III	3		
	4	$A=\int_{1}^{e} 2 \frac{\ln x}{x} d x=\left[\ln ^{2} x\right]_{1}^{e}=1 u^{2} \text {, then } A=4 \mathrm{~cm}^{2} .$	

IV	A-1	To get a product equal to 0 it's enough to draw from U a ball numbered 0 , therefore the probability is equal to $\frac{3}{5}$. Or : Number of possible draws is equal to $5 \times 5=25$ $\mathrm{P}(\mathrm{X}=0)=\frac{3 \times 5}{5 \times 5}=\frac{3}{5}$							
	A-2	X_{i}	0	1	2	3	4	5	
		p_{i}	$3 / 5$	2/25	2/25	2/25	2/25	2/25	
	B-1	$\mathrm{C}_{10}^{2}=45$.							
	B-2	To get a product equal to 0 we must obtain one of the following outcomes: Two balls numbered 0 or $\{0 ; a\} \text { with } a=1,2,3,4,5 .$ Number of favorable cases is $\mathrm{C}_{3}^{2}+\mathrm{C}_{3}^{1} \times \mathrm{C}_{7}^{1}=24$ $\mathrm{P}(\mathrm{q}=0)=\frac{24}{45}=\frac{8}{15}$							
	B-2 b	$\begin{aligned} \mathrm{P}(\mathrm{q}<4) & =\mathrm{P}(\mathrm{q}=0)+\mathrm{P}(\mathrm{q}=1)+\mathrm{P}(\mathrm{q}=2)+\mathrm{P}(\mathrm{q}=3) \\ & =\frac{8}{15}+\frac{\mathrm{C}_{3}^{2}+\mathrm{C}_{3}^{1} \times \mathrm{C}_{1}^{1}+\mathrm{C}_{3}^{1} \times \mathrm{C}_{1}^{1}}{45}=\frac{33}{45}=\frac{11}{15} . \end{aligned}$							

