امتحانات شهادة الثانوية العامة فرع علوم الحياة

دورة سنة ٢٠٠٤ العادية

الاسم الرقم : مسابقة في الرياضيات المدة: ساعتان

عدد المسائل: اربع

ملاحظة: يُسمح بإستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I - (3 points)

In the complex plane referred to a direct orthonormal system (O; u, v), consider the points A and B such that : $z_A = 1$ and $z_B = \frac{3}{2} + i \frac{\sqrt{3}}{2}$.

1) a - Write $z_B - z_A$ in the exponential form.

Let (C) be the circle with center A and radius 1.

- b Determine a measure of the angle (u; AB).
- c Show that the point B belongs to the circle (C).
- 2) To every point M, of non-zero affix Z, associate the point M' of affix z' such that $z' = \frac{\overline{z} + 2}{\overline{z}}.$
 - a Prove that $\overline{z}(z'-1)=2$.
 - b Deduce, when M' moves on the circle (C), that M moves on a circle (T) to be determined.

II - (4 points)

In the space referred to a direct orthonormal system (O; i, j, k), consider the lines (d) and (d') defined by :

$$(d): \begin{cases} x=t+1 \\ y=2t \\ z=t-1 \end{cases} \quad \text{and} \quad (d'): \begin{cases} x=2m \\ y=-m+1 \\ z=m+1 \end{cases}$$

(t and m are two real parameters).

- 1) Prove that (d) and (d') are skew (not coplanar).
- 2) a Show that x y + z = 0 is an equation of the plane (P) determined by O and (d).
 - b Determine the coordinates of E, the point of intersection of (P) and (d').
 - c Prove that the straight line (OE) cuts (d).
- 3) a Calculate the distance from point O to the line (d).
 - b Deduce that the circle in plane (P), with center O and passing through E, is tangent to line (d).

III- (9 points)

Let f be the function defined, on] 0; $+\infty$ [by f (x) = x + 2 $\frac{\ln x}{x}$. (C) is the representative curve

of f in an orthonormal system (O; i, j); unit 2 cm.

- 1) a Calculate $\lim_{x \to 0} f(x)$ and give its graphical interpretation.
 - b Determine $\lim_{x \to +\infty} f(x)$ and verify that the line (d) of equation y = x is an asymptote of (C).
 - c Study according to the values of x , the relative position of (C) and (d) .
- 2) The table below is the table of variations of the function f', the derivative of f.

- a Show that f is strictly increasing on its domain of definition, and set up its table of variations.
- b Write an equation of the line (D) that is tangent to (C) at the point G of abscissa e.
- c Prove that the curve(C) has a point of inflection L.
- d Show that the equation f(x) = 0 has a unique root α and verify that $0.75 < \alpha < 0.76$.
- 3) Draw (D), (d) and (C).
- 4) Calculate, in cm^2 , the area of the region bounded by the curve (C), the line (d) and the two lines of equations x = 1 et x = e.

IV- (4points)

Consider two urns U and V:

U contains **three** balls numbered 0 and **two** balls numbered 1.

V contains **five** balls numbered 1 to 5.

A - One ball is drawn randomly from each urn.

Designate by X the random variable that is equal to the product of the two numbers that are marked on the two drawn balls.

- 1) Prove that P(X = 0) is equal to $\frac{3}{5}$.
- 2) Determine the probability distribution of \boldsymbol{X} .
- ${f B}$ In this part, the 10 balls that were in urns U and V are all placed in one urn W . Two balls are drawn, simultaneously and at random, from this urn W.
 - 1) What is the number of possible draws of these 2 balls?
 - 2) Let q designate the product of the too numbers that are marked on the two drawn balls. .
 - a Show that the probability P(q=0) is equal to $\frac{8}{15}$.
 - $b-Calculate the probability \ P(q<4)$.

Life sciences		s MATH 1 st SESSION 200	04
Q		Answers	M
Ι	1-a	$z_{B} - z_{A} = \frac{1}{2} + i \frac{\sqrt{3}}{2} = e^{i \frac{\pi}{3}}$	
	1-b	$(\vec{u};\overset{\rightarrow}{AB}) = arg(Z_{\overset{\rightarrow}{AB}}) = arg(Z_B - Z_A) = \frac{\pi}{3}$	
	1-c	$AB = z_B - z_A = 1$ then B belongs to (C).	
	2-a	$ \bar{z}(z'-1) = \bar{z}(\bar{z}+2) = \bar{z}(\bar{z}+2) = \bar{z}(\bar{z}) = 2. $	
	2-b	If M' moves on (C) then AM' = 1 and $ z'-1 =1$ hence $ z' =2$ then	
		z =2 and M moves on the circle of center O and radius 2.	

II	1	$\overrightarrow{V}(1;2;1) \text{ and } \overrightarrow{V'}(2;-1;1); \overrightarrow{V} \text{ and } \overrightarrow{V'} \text{ are not collinear, then (d)}$ and (d') are not parallel. Study of the intersection of (d) and (d'): $t+1=2m; 2t=-m+1; t-1=m+1$ Take $2t=-m+1; t-1=m+1$, we get $t=1$ and $m=-1$, these values do not verify $t+1=2m$. Hence (d) and (d') are skew $\blacktriangleright \text{Or : Let L } (1;0;-1) \text{ be a point of (d) and J } (2;0;2) \text{ be a point of (d')};$ $\overrightarrow{LJ}.(\overrightarrow{V} \land \overrightarrow{V'}) = \begin{vmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 2 & -1 & 1 \end{vmatrix} = -12 \neq 0$	
	2-a	By verification: O is a point of (P) (d) lies in (P) because $t + 1 - 2t + t - 1 = 0$ for every real number t. Or: M(x; y; z) belongs to (P) iff \overrightarrow{OM} .($\overrightarrow{OL} \land \overrightarrow{V}$) = 0 which gives $x - y + z = 0$	
	2-b	2m + m - 1 + m + 1 = 0; $m = 0$ then E (0; 1; 1).	
	2-c	(OE) is a line in plane (P), (OE) and (D) are coplanar and they are not parallel (OE and V are not collinear), therefore they intersect. ► Or: Determine a system parametric equations of (OE) and then prove that it cuts (d).	
	3-a	distance $(O/(d)) = \dots = \sqrt{2}$.	
	3-b	$OE = \sqrt{2} = distance (O/(d))$; then (C) is tangent to (d).	

III	1-a	$\lim_{x\to 0} \ln x = -\infty \text{ then } \lim_{x\to 0} f(x) = -\infty \text{ ; y'y is an asymptote of (C)}.$
	1-b	$\lim_{x \to +\infty} \frac{\ln x}{x} = 0 \text{ then } \lim_{x \to +\infty} f(x) = +\infty \text{ ; } \lim_{x \to +\infty} [f(x) - x] = 0 \text{ hence the line}$ (d) of equation $y = x$ is an asymptote of (C) at $+\infty$.
	1-c	$f(x) - x = 2 \frac{\ln x}{x}.$ For x = 1, (C) cuts (d). For 0 < x < 1, f(x) - x < 0 then (C) is below (d). For x > 1, (C) is above (d).
	2-a	$f'(x) \ge 1 - \frac{1}{e^3} > 0$ then f is strictly increasing. $\frac{x \mid 0}{f(x)} = \frac{+\infty}{+\infty}$
	2-b	$y = f'(e)(x - e) + f(e)$; $y = x - e + e + \frac{2}{e} = x + \frac{2}{e}$
	2-c	f "(x) vanishes for $x = e\sqrt{e}$ and changes sign, then (C) has a point of inflection L of abscissa $e\sqrt{e}$.
	2-d	f is continuous and changes sign on its domain, $f(x) = 0$ has at least a root α , moreover f is strictly increasing, then α is unique. $f(0.75) \times f(0.76) = -0.017 \times 0.377 < 0$, then $0.75 < \alpha < 0.76$.
	3	
	4	$A = \int_{1}^{e} 2 \frac{\ln x}{x} dx = \left[\ln^{2} x \right]_{1}^{e} = 1 u^{2}, \text{ then } A = 4 \text{ cm}^{2}.$

IV	A-1	To get a product equal to 0 it's enough to draw from U a ball numbered 0, therefore the probability is equal to $\frac{3}{5}$. P(X = 0) = $\frac{3 \times 5}{5 \times 5} = \frac{3}{5}$.	
	A-2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	B-1	$C_{10}^2 = 45$.	
	B-2 a	To get a product equal to 0 we must obtain one of the following outcomes: Two balls numbered 0 or $\{0;a\}$ with $a=1,2,3,4,5$. Number of favorable cases is $C_3^2 + C_3^1 \times C_7^1 = 24$ $P(q=0) = \frac{24}{45} = \frac{8}{15}$	
	B-2 b	$P(q < 4) = P(q = 0) + P(q = 1) + P(q = 2) + P(q = 3)$ $= \frac{8}{15} + \frac{C_3^2 + C_3^1 \times C_1^1 + C_3^1 \times C_1^1}{45} = \frac{33}{45} = \frac{11}{15}.$	