

This Exam Includes Three Exercises. It Is Inscribed on 4 Pages Numbered From 1 to 4. The Use of a Non-programmable Calculator Is Allowed

Answer The Three Following Exercises:

First Exercise (7 points) Study of a Household Product "Windex"

Ammonia, NH_{3}, in aqueous solution is used often in cleaning. "Windex" is a household product used to clean glass. This exercise aims to titrate ammonia in "Windex" and to prepare a buffer solution.
This study is performed at $25^{\circ} \mathrm{C}$.

Given:

Conjugate acid/base pair	$\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{H}_{2} \mathrm{O}$	$\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$	$\mathrm{H}_{2} \mathrm{O} / \mathrm{HO}^{-}$
pK_{a}	0	9.2	14

- Molar volume of a gas under the experimental conditions is $\mathrm{V}_{\mathrm{m}}=24 \mathrm{~L} \cdot \mathrm{~mol}^{-1}$.
- Ammonia gas is very soluble in water.

I- Dilution of a commercial hydrochloric acid solution

A bottle of a commercial hydrochloric acid solution is available. We have, among others, the following indications:
Density: $\rho=1.12 \mathrm{~g} \cdot \mathrm{~mL}^{-1} ; ~ \%$ by mass $=32.13 \% ; \mathrm{M}_{\mathrm{HCl}}=36.5 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$.
1- Show that the molar concentration of this solution, noted (S_{0}), is $\mathrm{C}_{0}=9.86 \mathrm{~mol} . \mathrm{L}^{-1}$.
2- A solution (S) is prepared by dilution of the solution $\left(\mathrm{S}_{0}\right)$. The solution (S) is titrated with a sodium hydroxide solution. The obtained value of the concentration of (S) is $\mathrm{C}_{\mathrm{S}}=0.07 \mathrm{~mol} . \mathrm{L}^{-1}$.
The two following sets of glassware are available:
Set (a): 1000 mL volumetric flask, 10 mL graduated pipet (graduated $1 / 10$), 50 mL beaker.
Set (b): 100 mL volumetric flask, 2 mL volumetric pipet, 50 mL beaker.
Explain, if each one of the two sets is convenient to perform the above dilution.

II- Titration of the "Windex" solution

A volume $\mathrm{V}=25 \mathrm{~mL}$ of "Windex" solution is titrated with the hydrochloric acid solution (S) using a pH -meter.
Some of the experimental results are given in the following table:

$\mathrm{V}_{(\mathrm{S})}$ in mL	0	22	30
pH	10.2	5.2	2.4

$\mathrm{V}_{(\mathrm{S})}$ is the added volume of solution (S) during titration.

1- Write the equation of the titration reaction.
2- At the equivalence point we have: $\mathrm{V}_{(\mathrm{S}) \text { Equivalence }}=22 \mathrm{~mL}$ and $\mathrm{pH}_{\text {Equivalence }}=5.2$.
a) Justify the pH value which shows the acid nature of the obtained solution at equivalence.
b) Determine the volume of ammonia gas needed to prepare 1 L of « Windex » solution.

3- Draw the shape of the curve $\mathrm{pH}=\mathrm{f}\left(\mathrm{V}_{\mathrm{S}}\right)$ for: $0 \leq \mathrm{V}_{(\mathrm{S})} \leq 30 \mathrm{~mL}$, by locating four remarkable points on this curve.
Take the following scales: abscissa: 1 cm for 2 mL and ordinate: 1 cm for 1 unit of pH .

III- Preparation of a buffer solution

The pH -meter, already used, was calibrated with a buffer solution of $\mathrm{pH}=7$ and another buffer solution of basic nature. The second solution was consumed; it is desired to prepare a buffer solution of $\mathrm{pH}=9.2$.
An ammonia solution of concentration $\mathrm{C}_{\mathrm{b}}=0.06 \mathrm{~mol} . \mathrm{L}^{-1}$ and a hydrochloric acid solution of concentration $\mathrm{C}_{\mathrm{a}}=0.07 \mathrm{~mol} . \mathrm{L}^{-1}$ are available.
Determine the volume of ammonia solution V_{b} added to $\mathrm{V}_{\mathrm{a}}=60 \mathrm{~mL}$ of hydrochloric acid solution in order to prepare this buffer solution.

Second Exercise (6 points)
 Kinetic of The Decomposition Reaction of Hydrogen Peroxide

It is suggested to study, at $25^{\circ} \mathrm{C}$ and in the presence of Fe^{3+} ions as catalyst, the kinetic of the decomposition reaction of hydrogen peroxide solution which is sold, in drugstores, in dark flasks. A volume $\mathrm{V}=50 \mathrm{~mL}$ of a stabilized hydrogen peroxide solution, of molar concentration $\mathrm{C}=0.893 \mathrm{~mol} . \mathrm{L}^{-1}$, is poured into a 100 mL volumetric flask; this flask is then placed on a precision balance.
At time $\mathrm{t}=0$, a volume of 2 mL of iron III nitrate solution $\left(\mathrm{Fe}^{3+}+3 \mathrm{NO}_{3}^{-}\right)$is added into the volumetric flask. After a short time, a big amount of gas is observed. This gas is released from the decomposition of hydrogen peroxide according to the following equation:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}
$$

With time, the balance indicates a decrease in mass. During the decomposition reaction, the variation of mass Δm represents practically the mass of oxygen gas released at each instant t.

Given:

- Molar mass: $\mathrm{Mo}_{2}=32 \mathrm{~g} . \mathrm{mol}^{-1}$.
- Oxygen gas is practically insoluble in water.

I- Preliminary study

1- Specify how the above decomposition reaction will be affected in each one of the two following cases:
a) Performing this study at $40^{\circ} \mathrm{C}$.
b) Diluting the above hydrogen peroxide solution.

2- Show that, at instant t, the number of moles of hydrogen peroxide $n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\mathrm{t}}$ and the variation of mass Δm (expressed in grams) are related to each other by the following relation:

$$
\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\mathrm{t}}=4.46 \times 10^{-2}=\frac{\Delta m}{16}
$$

II- Kinetic Study of the reaction

The table below shows the number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ at different instants t :

$\mathrm{T}(\mathrm{min})$	0	2	3	4	8	10	15	20	30	35	40
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ $\left(10^{-2} \mathrm{~mol}\right)$	4.46	4.46	4.33	4.15	3.33	2.90	2.17	1.83	1.43	1.27	1.21

1- Plot, on graph paper, the curve $n\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)=\mathrm{f}(\mathrm{t})$.
Take the following scales: abscissa: 1 cm for 2 min ; ordinate: 5 cm for $1.00 \times 10^{-2} \mathrm{~mol}$.
2- Determine the average rate of disappearance of $\mathrm{H}_{2} \mathrm{O}_{2}$, in mol. min^{-1}, between the two instants: $\mathrm{t}_{1}=10 \mathrm{~min}$ and $\mathrm{t}_{2}=25 \mathrm{~min}$.
3- Determine graphically the half-life of the reaction.
4- After a certain time t, the value of Δm equals 713 mg .
Identify the chemical species that are present in the obtained solution at this time.

Third Exercise (7 points)

Identification of an Alcohol and Some Reactions of Alcohols
The analysis, of a monoalcohol (A) of a saturated open carbon chain, shows that the percentage by mass of oxygen is equal to 26.67%.

Given:

- Molar atomic mass in g. $\mathrm{mol}^{-1}: \mathrm{M}_{\mathrm{H}}=1 ; \mathrm{M}_{\mathrm{C}}=12 ; \mathrm{M}_{\mathrm{O}}=16$.
N. B.:

Use the condensed structural formulas of the organic compounds to write the chemical equations.

I- Determination of the Molecular Formula of (A)

1- Show that the molecular formula of (A) is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
2- Write the condensed structural formulas of the possible isomers of (A).

II- Identification of (A)

1- The mild oxidation of (A), with an appropriate method, using an acidified potassium dichromate solution ($2 \mathrm{~K}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$) gives a compound (B). The compound (B) gives a positive test with $2,4-$ DNPH solution and a negative test with Fehling solution. Identify (B) and (A).
2- Write the equation of the mild oxidation of (A), knowing that the dichromate ions are reduced into chromium (III) ions Cr^{3+}, in acid medium.

III- From Menthol to Menthone

Menthone is a component of essential oils for several varieties of mint. It can be obtained by the mild oxidation of menthol which has a strong smell of mint. These two compounds have the following condensed structural formulas:

Menthol

Menthone

Justify the use of mild oxidation in the preparation of menthone starting from menthol.

IV- Esterification reaction of (A)

0.2 mol of ethanoic acid reacts with 0.2 mol of (A) in the presence of some mL of concentrated sulphuric acid solution. After a sufficient long time, the amount of ester, in the obtained homogeneous mixture, shows no more change, and is equal to 0.12 mol .

1- Write the equation of the reaction.
2- Show that the percentage of esterification of this reaction is 60%.
3- Three experiments are performed, under the same conditions. Their initial states are given in the following table:

Experiment	n ethanoic acid (mol)	$\mathrm{n}(\mathrm{A})(\mathrm{mol})$	n ester (mol)	n water (mol)
1	1	1	0	0
2	2	1	0	0
3	1	1	0.5	0

Show that each of the three experiments has a corresponding graph:

3- Specify if the yield of the esterification reaction will be affected by a moderate increase of temperature.

First Exercise (7 points)

Expected Answer
I-
1- The molar concentration of a solution is given by:
$\mathrm{C}=\frac{\mathrm{n}(\text { solute })_{\mathrm{mol}}}{\mathrm{V}(\text { solution })_{\mathrm{L}}}=\frac{\mathrm{m}(\text { solute })_{\mathrm{g}}}{\mathrm{M}(\text { solute })_{\mathrm{g} / \mathrm{mol}} \times V \times 10^{-3}}$.
$\mathrm{m}($ solute $)=\mathrm{m}($ solution $) \times \frac{\%}{100}=\rho \times V \times \frac{\%}{100}$. Then :
$\mathrm{C}=\frac{\% \times \rho}{100 \times \mathrm{M} \times 10^{-3}}$. Using the given indications, we
obtain: $\mathrm{C}_{0}=9.86$ mol. L^{-1}.
2- By dilution, the number of moles of solute does not
change, then $: \mathrm{C}_{0} \times \mathrm{V}_{0}=\mathrm{C}_{\mathrm{S}} \times \mathrm{V}_{\mathrm{S}} ;$
The factor of dilution:
$\delta=\frac{\mathrm{C}_{0}}{\mathrm{C}_{\mathrm{S}}}=\frac{\mathrm{V}_{\mathrm{S}}}{\mathrm{V}_{0}}=\frac{9.86}{0.07} \approx 141$. The volume V_{S} must be

Set (a) is convenient to perform the dilution. To use a 1000 mL volumetric flask, it is required a volume of commercial solution: $\quad V_{0}=\frac{1000}{141}=7.1 \mathrm{~mL}$, that could be removed with a graduated pipet of 10 mL .
Set (b) is not convenient to perform this dilution. To use a 100 mL volumetric flask, it is required a volume of commercial solution: $\quad V_{0}=\frac{100}{141}=0.71 \mathrm{~mL}$. This volume cannot be removed with a 2 mL volumetric pipet.
II-
1- The equation of the titration reaction is:

$$
\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

2-
a) The main species at the equivalence point, other than water, are Cl^{-}and $\mathrm{NH}_{4}^{+} . \mathrm{Cl}^{-}$is a spectator ion while NH_{4}^{+}is an acid that reacts with water to make acid solution at equivalence.
b)
*the concentration of ammonia in "Windex":
At equivalence point, the number of moles of NH_{3} in 25 mL of "Windex" is equal to the number of moles of $\mathrm{H}_{3} \mathrm{O}^{+}$in 22 mL of solution (S):
$\mathrm{C}\left(\mathrm{NH}_{3}\right) \mathrm{xV}=\mathrm{C}_{(\mathrm{S})} \times \mathrm{V}_{(\mathrm{S}) \mathrm{E}}$:
$\mathrm{C}\left(\mathrm{NH}_{3}\right)=\frac{0.07 \times 22 \times 10^{-3}}{25 \times 10^{-3}}=0.06 \mathrm{~mol} . \mathrm{L}^{-1}$.

*The volume of ammonia required to prepare 1 L of "Windex":
 $\mathrm{V}\left(\mathrm{NH}_{3}\right)=\mathrm{n}\left(\mathrm{NH}_{3}\right) \mathrm{xV}_{\mathrm{m}}=\mathrm{C}\left(\mathrm{NH}_{3}\right) \mathrm{xVxV}_{\mathrm{m}}$:

$\mathrm{V}\left(\mathrm{NH}_{3}\right)=0.06 \times 1 \times 24=1.44 \mathrm{~L}$.
3- The 4 remarkable points are:
A: $\left(\mathrm{V}_{\mathrm{S}}=0-\mathrm{pH}=10.2\right)$
B: $\left(\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SE}} / 2=11 \mathrm{~mL}-\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}=9.2\right)$
$\mathrm{C}:\left(\mathrm{V}_{\mathrm{S}}=30 \mathrm{~mL}-\mathrm{pH}=2.4\right)$
$\mathrm{E}:\left(\mathrm{V}_{\mathrm{SE}}=22 \mathrm{~mL}-\mathrm{pH}_{\mathrm{E}}=5.2\right)$

III-
When the pH of a buffer solution is equal to the pK_{a} of the conjugate acid/base, we have: [acid] = [base].
The equation of the reaction is:
-0.5 if the half equivalence point is not located.
Zero if the given three points are not located.

$\mathrm{n}_{\text {solute }}$ in $\mathrm{mol}=\mathrm{C}$ in mol. $\mathrm{L}^{-1} \mathrm{x} \mathrm{V}$ in L :
$\frac{C_{a} x V_{a}}{V}=\frac{\left(C_{b} x V_{b}-C_{a} x V_{a}\right)}{V}$
Since $V_{a}=60 \mathrm{~mL}$ so $V_{b}=140 \mathrm{~mL}$.

1 \begin{tabular}{l|l|}

\& | -0.5 if the half |
| :--- |
| equivalence point |
| is not located. |
| Zero if the given |
| three points are |
| not located. |

1.25
\end{tabular}

Second Exercise (6 points)

Expected Answer	Mark	Comments
I-		
1- a) When the the temperature increases, the rate of the		
reaction increases because the temperature is a kinetic	0.5	
factor.		
b) Dilution decreases the concentration of the reactant $\mathrm{H}_{2} \mathrm{O}_{2}$		
, then the rate of the decomposition reaction decreases.		
2- According to the equation: $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$, we		
have, at each instant $\mathrm{t}: \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\text {reacted }}=2 \mathrm{n}\left(\mathrm{O}_{2}\right)_{\text {formed- }}$	1	
And, the remaining number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ at instant t is $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\mathrm{t}}=\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\text {initial }}-\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\text {reacted }}$		

$=\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\text {initial }}-2 \mathrm{n}\left(\mathrm{O}_{2}\right)_{\text {formed }}$. Where:
$\mathrm{n}\left(\mathrm{O}_{2}\right)=\frac{\Delta m}{M\left(O_{2}\right)}$,
and $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\text {initial }}=\mathrm{Cx} 50 \times 10^{-3} \mathrm{~mol}=0,893 \times 0.05$

$$
=4.46 \times 10^{-2} \mathrm{~mol}
$$

Then, we have:
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\mathrm{t}}=4.46 \times 10^{-2}-\frac{2 \Delta \mathrm{~m}}{32}=4.46 \times 10^{-2}-\frac{\Delta \mathrm{m}}{16}$, where
Δm is expressed in grams.
II-
1-

2- The average rate of disappearance of $\mathrm{H}_{2} \mathrm{O}_{2}$, between the two instants $\mathrm{t}_{1}=10 \mathrm{~min}$ and $\mathrm{t}_{2}=25 \mathrm{~min}$, is given by:
$\overline{\mathrm{r}}=-\frac{\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{25}-\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{10}}{25-10}=-\frac{1.60 \times 10^{-2}-2.9 \times 10^{-2}}{15}$
$=8.67 \times 10^{-4} \mathrm{~mol} . \mathrm{min}^{-1}$.
3 - The half-life of the reaction is the time needed for half the initial number of moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ to be decomposed. The corresponding time for this value is $\mathrm{t}_{1 / 2}=14.5 \mathrm{~min}$.(refer to the graph).
4- Based on the question (1-2-), we obtain:
$\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)_{\mathrm{t}}=4.46 \times 10^{-2}-\frac{713 \times 10^{-3}}{16} \approx 0$.
It is concluded that $\mathrm{H}_{2} \mathrm{O}_{2}$ is decomposed completely; and the chemical species present in the obtained solution are:
$\mathrm{H}_{2} \mathrm{O}$: which is a solvent and a product of the reaction;
Fe^{3+} : which is a catalyst;
NO_{3}^{-}: which is a spectator ion.

Third Exercise (7 points) L. S.

Third Exercise (7 points) G. S.

Expected Answer	Mark	Comments
I-		
1- The general formula of a monoalcohol having a non		
branched open carbon chain is: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$ of molar mass:	0.75	
$\mathrm{M}=14 \mathrm{n}+2+16$, where the percentage by mass of		
oxygen is: $26.67=\frac{16 x 100}{14 n+18} \cdot \mathrm{So} \mathrm{n}=3$, and the		
molecular formula of (A) is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.		
2- The condensed structural formulas of the possible		
isomers of (A) are:	0.25×2	
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{CH}_{3}$.		
II-		
1- The positive test of (B), with $2,4-\mathrm{DNPH}$, shows that (B) is an aldehyde or a ketone.		
The negative test of(B), with Fehling solution, shows	1.5	
that (B) is a ketone; which is derived from a secondary		

