دورة العام 2012 الاستثنائية	امتحانات الشبهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
لاسىم: لرقم:	المدخ بساعتان	

This Exam Includes Three Exercises. It Is Inscribed on 4 Pages Numbered From 1 to 4. The Use of A Non-programmable Calculator is Allowed. Answer the three following exercises:

First exercise (7 points) Ammonia Solution

Ammonia NH_3 is a gas which is highly soluble in water. It is widely used in chemical industry. The aim of this exercise is to study certain characters of a solution of ammonia NH_3 and to prepare a buffer solution.

Given:

- This study is carried at 25 °C.
- Molar volume of gas: $V_m = 24 \text{ L.mol}^{-1}$.
- -

Acid/base Couple	${\rm H_{3}O^{+}/~H_{2}O}$	NH_4^+ / NH_3	H_2O/HO^-
pKa	0	9.2	14

1- Determination of the degree of conversion of Ammonia in Water

The pH of an ammonia solution (S), of unknown concentration C_b, is equal to 10.6

- 1.1- Identify the acid-base nature of NH₃ in water.
- 1.2- Write the equation of the reaction of ammonia with water.
- 1.3- Give the expression of the equilibrium constant of the equation of this reaction. Calculate its value.
- 1.4- Show that the molar concentration of ammonia solution (S) is $C_b = 1.0 \times 10^{-2} \text{ mol.L}^{-1}$. (neglect [HO⁻] with respect to C_b)
- 1.5- Determine the degree of conversion of ammonia in water.
- 1.6- Calculate the volume of NH₃ gas needed to prepare 1 L of solution (S).

2- Preparation of a Buffer Solution

A volume V₁ of solution (S) and a volume V₂ of an ammonium chloride solution (NH $_4^+$ + Cl⁻) of concentration Ca = 6.0 x10⁻³ mol.L⁻¹ are mixed . 200 mL of a buffer solution of pH = 9.0 is obtained .

2.1-Write the equation of the predominant reaction (having the highest value of K_R).

2.2-Show that V_1 equals 55 mL.

- 2.3- To the obtained buffer solution, 5.0×10^{-4} mol of HCl (strong acid) is added ,without appreciable variation of volume.
 - 2.3.1- Write the equation of the complete reaction that takes place.
 - 2.3.2- Determine the pH of the resulting solution.

Second exercise (6 points) Identification of an Organic Compound

The aim of this exercise is to identify a liquid organic compound A of unknown nature.

Given :

- Density of A : $d = 0.81 \text{ g.mL}^{-1}$.
- Molar mass in g.mol⁻¹: $M_H = 1$; $M_C = 12$; $M_O = 16$; $M_{Cl} = 35.5$

1- Identification of the Chemical Family of A

To identify A, some tests are carried out and the following results are noted :

- an aqueous solution of A does not conduct practically electric current.
- A reacts with sodium metal producing hydrogen gas.
- the catalytic dehydrogenation of A led to an organic compound B which gives a yellow precipitate with 2,4-DNPH.
- 1.1- Identify the chemical family of A based on the result of each of the three above tests.

1.2- Give the molecular formula of the compound A, of n carbon atoms, knowing that its carbon chain is saturated and non cyclic.

2- Determination of the molecular formula of A

A volume of 9.1 mL of A reacts with an excess $SOCl_2$ to give a mass of 9.2 g of an organic compound R – Cl according to the following equation:

 $A + SOCl_2 \rightarrow R - Cl + SO_2 + HCl$

- 2.1- Show that the molecular formula of A is $C_4H_{10}O$.
- 2.2- Write the possible condensed structural formulas of A.

3- Identification of A

Compound B gives a brick- red precipitate when heated with Fehling's solution.

- 3.1- Verify if this test allows to identify A.
- 3.2- Give the name of A, knowing that its carbon chain is not branched.
- 3.3- Write the equations of the following reactions, using the condensed structural formulas of the organic compounds :
 - action of A on sodium metal .
 - catalytic dehydrogenation of A .
 - intramolecular dehydration of A .

Third exercise (7 points) Oxidation of Oxalic Acid

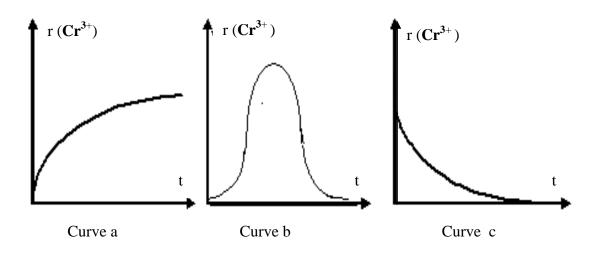
In order to carry out two kinetic follow-ups, the following solutions are available:

- Solution S_1 of oxalic acid $H_2C_2O_4$ of concentration $C_1 = 0.10$ mol.L⁻¹
- Solution S₂ of potassium dichromate $(2K^+ + Cr_2O_7^{2-})$
- Solution S_3 of potassium permanganate (K^+ + MnO₄⁻) of concentration $C_3 = 2.0 \times 10^{-2} \text{ mol.L}^{-1}$
- Concentrated sulfuric acid.

1- Oxidation of Oxalic Acid by Dichromate Ions

At a constant temperature, a volume V_1 of solution S_1 , a volume V_2 of solution S_2 and few drops of the concentrated sulfuric acid are mixed.

A slow and complete reaction takes place. The equation of this reaction is as follows:


 $Cr_2O_7^{2-} + 3 H_2C_2O_4 + 8 H_3O^+ \rightarrow 2 Cr^{3+} + 6 CO_2 + 15 H_2O$

The variation of the concentration of dichromate ions versus time is followed with an appropriate method. The variation of the concentration of Cr^{3+} ions formed are deduced. The results are grouped in the following table :

t (s)	10	20	40	60	100	140	180	240	300
$[Cr^{3+}] (10^{-3} \text{ mol.L}^{-1})$	1.2	2.2	4.0	5.5	7.5	9.1	10.3	11.5	12.2

- 1.1- Plot the curve representing the variation of the concentration of Cr^{3+} ions versus time, $[Cr^{3+}] = f(t)$ in the interval of time: [0 300 s].
- Take the following scale: 1 cm for 20s in abscissa and 1 cm for 1.0×10^{-3} mol.L⁻¹ in ordinate. 1.2- Determine the rate of formation of Cr³⁺ ions at t = 100 s. Deduce the rate of the reaction at
- 1.2- Determine the rate of formation of Cr^{3+} ions at t = 100 s. Deduce the rate of the reaction at this instant.
- 1.3- One of the three curves given below represents the variation of the rate of formation of Cr^{3+} ions versus time $r(Cr^{3+}) = g(t)$.

Choose, by justifying, the correct curve.

2- Oxidation of Oxalic Acid by Permanganate Ions

Oxalic acid reduces, in acidic medium, permanganate ions according to the equation:

 $2 \text{ MnO}_{4}^{-} + 5 \text{ H}_2\text{C}_2\text{O}_4 + 6 \text{ H}_3\text{O}^{+} \rightarrow 2 \text{ Mn}^{2+} + 10 \text{ CO}_2 + 14 \text{ H}_2\text{O}$

where MnO_{4}^{-} is the only colored species in this reacting medium.

A volume $V_1 = 10$ mL of solution S_1 , 200 mL of distilled water and 5 mL of concentrated sulfuric acid (in excess) are poured in a beaker.

Add 2 mL of solution S_3 to the beaker ; the reacting mixture is decolorized when the duration 210s is attained . The addition of 2ml of solution S_3 is repeated 6 times and the duration necessary for the decolorization of the reacting medium is noted .

The results are grouped in the following table:

Number of addition	1	2	3	4	5	6	7
Duration (s)	210	90	60	55	47	40	34

2.1- Interpret the decolorization of the reacting medium after each addition.

- 2.2- Determine the minimal volume of solution S_3 , needed to be added, so that the color due to permanganate ions persists definitively.
- 2.3- Based on the results of the above table :
 - 2.3.1- Specify how the rate of disappearance of permanganate ions varies from one addition to another.
 - 2.3.2- Interpret the change of this rate in this kinetic study. Give, then, the name of the involved chemical phenomenon.

دورة العام 2012 الاستثنائية	امتحانات الشهادة الثانوية العامة الفرع : علوم عامة	وزارة التربية والتعليم العالي المديرية العامة للتربية
		دائرة الامتحانات
لاسم: لرقم:	المدخين اعتان	مشروع معيار التصحيح

First exercise (7 points)

Part of	First exercise (7 points)	
the Q	Answer	Mark
1.1	Ammonia (NH $_3$) is a base because its dissolution in water leads to a medium of which pH = $10.6 > 7$.	0.5
1.2	The equation of its reaction with water is:	0.5
	$NH_{3 (aq)} + H_2O_{(l)} \rightleftharpoons NH_{4(aq)}^+ + HO_{(aq)}^-$	
1.3	The equilibrium constant of the equation of this reaction is: $K_{R} = \frac{[NH_{4}^{+}] [HO^{-}]}{[NH_{3}]} \times \frac{[H_{3}O^{+}]}{[H_{3}O^{+}]} \text{ Its value is: } \frac{10^{-14}}{10^{-9.2}} = 10^{-4.8}$ $K_{R} = 1.58 \times 10^{-5}.$	0.75
1.4	Calculation of C _b : $10^{-4.8} = \frac{[HO^{-}]^2}{C_b - [HO^{-}]} = \frac{(10^{-3.4})^2}{C_b - 10^{-3.4}}$ C _b = 0.01 mol L ⁻¹ .	0.5
1.5	The coefficient of the dissociation α is given by: $\alpha = \frac{n(NH_3)\text{dissociated}}{n(NH_3)\text{introduced}} = \frac{[NH_4^+]}{C_b} = \frac{[HO^-]}{C_b} = \frac{10^{pH-14}}{C} = \frac{1.0 \times 10^{-3.4}}{1.0 \times 10^{-2}}.$ $\alpha = 10^{-1.4} = 0.04$	0.75
1.6	The volume of ammonia gas: $V = nxV_m = C_b x V_{(S)} x V_m = 0.01 x 1 x 24 = 0.24 L.$	0.5
2.1	The equation of the predominant reaction which takes place between the strongest acid and the strongest base introduced into the solution is: $NH_{3(aq)} + NH_{4(aq)}^{+} \rightleftharpoons NH_{4(aq)}^{+} + NH_{3(aq)}$	0.5
2.2	The initial quantities of NH ₃ and NH ₄ ⁺ are conserved in the obtained solution : $pH = pKa + log \frac{[NH_3]}{[NH_4^+]}$ permits to calculate the values of the two volumes. $9 = 9.2 + log \frac{[NH_3]}{[NH_4^+]}$; $log \frac{[NH_3]}{[NH_4^+]} = -0.2$ and $\frac{[NH_3]}{[NH_4^+]} = 0.63$. $\frac{n(NH_3)}{n(NH_4^+)} = \frac{V_1 \times 10^{-2}}{V_2 \times 6 \times 10^{-3}} = 0.63$ and $V_1 + V_2 = 200$ mL. So $V_1 = 55$ mL.	1
2.3.1	The equation of the reaction is: $H_3O^+_{(aq)} + NH_{3(aq)} \approx NH^+_{4(aq)} + H_2O_{(l)}$	0.5

2.3.2		1.5
	$H_3O^+_{(aq)} + NH_3_{(aq)} \rightleftharpoons NH^+_4_{(aq)} + H_2O_{(l)}$	
	$H_{3}O_{(aq)}^{+} + NH_{3}_{(aq)} \approx NH_{4}^{+}_{(aq)} + H_{2}O_{(l)}$ Initial state(n mol) $5.10^{-4} + 5.5 \times 10^{-4} + 8.7 \times 10^{-4}$ solvant	
	Resulting solution $$ 5. 10^{-5} 13.7x10 ⁻⁴ solvant	
	PH = 9.20 + log $\frac{\frac{5 \times 10^{-5}}{V(\text{mixture})}}{\frac{13.7 \times 10^{-4}}{V(\text{mixture})}} = 7.76$	

Second Exercice (6pts) (LS)

Part	Answer	Mark
of the		
Q.		
1	A : ethanoic acid ; B : 2-butanol et C : 2-aminoethanoic acid	0.75
2	B is the chiral compound since it contains an asymmetric carbon (the carbon	0.5
	number 2 of the hydrocarbon chain).	
3.1	The equation of the reaction between A and B is	
	$CH_3 - CO_2H + CH_3 - CH_2 - CH - OH \rightleftharpoons CH_3 - C - O - CH - CH_2 - CH_3 + H_2O$	
		1
	CH ₃ O CH ₃	
	The name of the ester is: 1-methylpropyl ethanoate.	
3.2	% of A esterified =	
	n(A) esterified $n(A)$ initial $-n(A)$ remaining $n(A) = 0.2 - 0.08$	0.75
	$\frac{n(A)\text{ esterified}}{n(A)\text{ initial}} \times 100 = \frac{n(A)\text{ initial} - n(A)\text{ remain ing}}{n(A)\text{ initial}} \times 100 = \frac{0.2 - 0.08}{0.2} \times 100 =$	
	60%.	
4.1	The equation of this reaction:	
	$CH_3 - CO_2H + NH_3 \rightleftharpoons CH_3 - CO_2^- + NH_4^+$	0.75
	The name of the compound D is: ammonium ethanoate	
4.2	This reaction is an acid-base reaction since there is a proton exchange between the	
	acid of the pair $CH_3 - CO_2H / CH_3 - CO_2^-$ and the base of the pair	0.5
	NH_4^+ / NH_3	
4.3	The amide formed is $CH_3 - C - NH_2$; its name is ethanamide	
		0.5
	Ö	
5.1	The number of dipeptides obtained in this reaction is four.	0.5
5.2	The condensed structural formula is :	
	$NH_2 - CH_2 + C - NH + CH - CO_2H$	0.75
	O CH ₃	

Third exercise (7 points)

Part of the Q	$[Cr^{3+}](10^{-3}mo.L^{-1})$ Answer	Mark
1.1	A 2 0 0 50 100 150 200 250 300 350 t(s)	1
1.2	By definition: $r(Cr^{3+}) = \frac{d[Cr^{3+}]}{dt}$ at t = 100 s. Graphically, this rate represents the slope of the tangent to the curve $[Cr^{3+}] = f(t)$ at the point of abscissa t = 100 s. Consider on this tangent two points A and B whose co-ordinates are as follows: A (0; 3.2×10^{-3}) and B (200; 12.0×10^{-3}). According to the equation of the reaction, we can write: $r(Cr^{3+})_{t=100} = \frac{(12.0 - 3.2) \times 10^{-3}}{200} = 4.4 \times 10^{-5} \text{ mol.L}^{-1}.\text{s}^{-1}.$ The rate of the reaction = $r(Cr^{3+})/2 = 2.2x 10^{-5} \text{ mol.L}^{-1}.\text{s}^{-1}.$	1.5
1.3	According to the curve, $r(Cr^{3+})$ is maximum at $t = 0$, and decreases with time. As the reaction is complete, this rate is cancelled at the end of the reaction. Therefore, the corresponding curve is the curve c .	1
2.1	The disappearance of coloring is due to the disappearance of permanganate ions added $.MnO_{4}^{-}$ is the limiting reactant.	0.5
2.2	The minimal volume that must be added is equal to a volume V ₃ such as: $\frac{n(MnO_4^-) added}{2} = \frac{n(H_2C_2O_4) initial}{5} \text{ or } \frac{C_3 \times V_3}{2} = \frac{C_1 \times V_1}{5};$ Where V ₃ = $\frac{2 \times C_1 \times V_1}{5 \times C_3} = \frac{2 \times 0.1 \times 10}{5 \times 0.02} = 20 \text{ mL}.$	1.25
2.3.1	With each addition, $n(MnO_{4}^{-})$ is the same and the duration of disappearance of the color of these ions decreases each time, therefore the rate of disappearance of these ions increases.	1

2.3.2	The increase in this rate is due to Mn^{2+} ions formed that plays the role of a	0.75
	catalyst in this study and which is a product of the reaction (its concentration	
	increases from one addition to another).	
	The name of this phenomenon is the auto catalysis.	

Second exercise(6pts)(GS)

Part of the Q	Answer	Mark
1.1	The result of the first experiment shows that the aqueous solution of A	1.5
	does not contain ions.	
	The result of the second experiment shows that A can be an alcohol or an	
	acid, because alcohols and acids react with sodium to give hydrogen gas	
	and it is not an acid because it did not give ions in water.	
	The result of the third experiment shows that A can be a primary or	
	secondary alcohol because, by dehydrogenation, it gives a carbonyl	
	compound which gives a yellow precipitate with 2,4-DNPH.	
1.2	The carbon chain of A is saturated and does not contain a cycle, its	0.5
• 1	molecular formula is thus of the form: $C_nH_{2n+1}OH$.	
2.1	According to the equation:	1
	$C_nH_{2n+1}OH + SOCl_2 \rightarrow C_nH_{2n+1}Cl + SO_2 + HCl$	
	we have : $n(A) = n(C_nH_{2n+1}Cl);$	
	$\frac{d \times V}{M(A)} = \frac{m(RCl)}{M(RCl)}.$ With: M(A) = (14n + 18) g.mol ⁻¹ ;	
	$M(RCl) = (14n + 36.5) \text{ g.mol}^{-1}$; $d = 0.81 \text{ g.mL}^{-1}$; $V = 9.1 \text{ mL}$ and	
	m(RCl) = 9.2 g.	
	We obtain $n = 4$, the molecular formula of A is C ₄ H ₉ OH.	
2.2	The possible condensed structural formulas of A are:	0.75
	$CH_3 - CH_2 - CH_2 - CH_2 - OH;$	
	$CH_3 - CH_2 - CHOH - CH_3$ and $CH_3 - CH - CH_2 - OH$	
3.1	CH ₃	0.5
3.1	The compound B is an aldehyde because it reacts with Fehling's solution, it comes from the dehydrogenation of a primary alcohol. This test thus	0.5
	does not make it possible to identify A, because there are two primary	
	alcohols.	
3.2	The carbon chain of A is not branched, it is thus 1-butanol.	0.25
3.3	The equations are:	1.5
	Reaction with sodium:	
	$2 \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{OH} + 2 \operatorname{Na} \rightarrow 2 \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{ONa} + \operatorname{H}_2$	
	Dehydrogenation:	
	$CH_3 - CH_2 - CH_2 - CH_2 - OH \rightarrow CH_3 - CH_2 - CH_2 - CHO + H_2$	
	Intramolecular dehydration:	
	$CH_3 - CH_2 - CH_2 - CH_2 - OH \rightarrow CH_3 - CH_2 - CH = CH_2 + H_2O$	