الدورة الإسثنثـائيـّة للعام 2012	امتحانـات الثشهادة الثڭاتوية العامـة الفرع : إجتماع و إقتصـاد	وزارة التربيةّ والتتعليم العاللي المديرية (العامة للتربية دائرة الامتحـانـات
الاسم: الرقم:	مسابقة في مادة الرياضبيات المدة ساعتان	عدد المسائل): أربع

- يسنطيع المرشـح الإجابـة بـالترنيب الذي يناسبـه دون الالتز ام بترنيب المسـئل الوارد في المسـابقة .

I- (4 points)

A factory produces household articles. The table below shows the total cost y_{i}, expressed in millions LL, of the production of x_{i} hundreds of articles.

Number of articles x_{i}	0.6	0.8	1.1	1.2	1.5	2
Total cost y_{i}	1.4	1.5	1.8	2.1	2.5	3

In this exercise, give your answers rounded to the nearest 10^{-3}.

1) Let (D) be the regression line of y in terms of x in an orthogonal system of axes $x^{\prime} O x, y^{\prime} O y$. Write an equation of (D).
2) Estimate the total cost corresponding to a production of 220 articles.
3) The selling price of an article is 25000 LL , but only 80% of the produced articles are sold. a- Prove that the revenue is given by $\mathrm{R}(x)=2 \mathrm{x}$.
b- Estimate the profit achieved by this factory for the production of 220 articles.
c- In the previous system, consider the line (D^{\prime}) with equation $\mathrm{y}=2 \mathrm{x}$.
(D) and (D') intersect at a point S.

Calculate the abscissa of S and give an economical interpretation to the value thus obtained.

II- (4 points)

Rami's store sells T-shirts and jackets of two different sizes: small and large.

- 70% of the articles are T-shirts
- 40% of the T-shirts are of small size
- 50% of the jackets are of large size.

A client chooses randomly an article from this store.
Consider the following events:
T : « The chosen article is a T-shirt»
$\mathrm{J}:$ «The chosen article is a jacket»
S : «The chosen article is of small size».
A-1) a- Verify that the probability $p(S \cap T)$ is equal to 0.28 and calculate $p(S \cap J)$.
b- Deduce $\mathrm{p}(\mathrm{S})$.
2) Knowing that the chosen article is of small size, calculate the probability that it is a T-shirt.

B- The price of a T-shirt of small size is 30000 LL and that of of a T-shirt of large size is 50000 LL . The price of a jacket of small size is 40000 LL and that of a jacket of large size is 50000 LL . Let X be the random variable equal to the sum paid by the client for the purchase of the chosen article.

1) Determine the probability distribution of X.
2) Calculate the expected value $E(X)$.
3) Denote by N the number of articles sold in Rami's store .
a- Give, in terms of N , an estimation of the revenue of Rami's store.
b- If Rami is planning to make a revenue that exceeds 6000000 LL , what is the minimum number of T -shirts and that of jackets that he should sell?

III- (4 points)

At the beginning of a certain year, Fadi deposits a capital of 100 million LL in a bank, at an annual interest rate of 8%, compounded yearly.
At the end of every year, Fadi withdraws 10 million LL from his account to pay for a trip.
Denote by U_{n} the amount, in millions LL, that Fadi has in his account at the end of the $\mathrm{n}^{\text {th }}$ year after withdrawing the 10 million LL. $\left(\mathrm{U}_{0}=100\right)$.

1) Justify that $U_{n+1}=1.08 U_{n}-10$.
2) Verify that the sequence $\left(U_{n}\right)$ is not geometric.
3) For all natural numbers n, let $V_{n}=U_{n}+\alpha$.

Calculate α so that $\left(\mathrm{V}_{\mathrm{n}}\right)$ is a geometric sequence with common ratio 1.08.
In what follows, take $\alpha=\mathbf{- 1 2 5}$.
4) Calculate V_{n} and then U_{n} in terms of n.
5) Prove that $\left(U_{n}\right)$ is decreasing.
6) In how many years will Fadi not be able, for the first time, to pay for his trip using this account?

IV- (8 points)

A- Consider the function f , defined over]-2, 5], by $\mathrm{f}(\mathrm{x})=-\mathrm{x}+7-\ln (2+\mathrm{x})$, and denote by (C) its representative curve in an orthonormal system $(O ; \vec{i}, \vec{j})$.

1) Determine $\lim _{x \rightarrow-2} f(x)$ and deduce an asymptote (d) to (C).
2) Calculate $f(-1), f(0)$ and $f(5)$.
3) Find $f^{\prime}(x)$ and set up the table of variations of f.
4) Draw (d) and (C).
5) a-Prove that the function F defined over $]-2$; 5] by $F(x)=-\frac{x^{2}}{2}+8 x-(x+2) \ln (x+2)$ is an antiderivative of f .
b- Deduce the area of the region bounded by (C), the axis of abscissas and the two lines with equations $\mathrm{x}=0$ and $\mathrm{x}=1$.

B- A company manufactures files with a unit price x expressed in thousands LL with $0.3 \leq x \leq 5$.
The demand, expressed in thousands of units, is modeled by $f(x)$.
The supply $g(x)$, expressed in thousands of units, is given by $g(x)=\frac{3}{4} x+1$.

1) Calculate the demand corresponding to a unit price of 2000 LL .
2) Draw the graphical representation (G) of g in the same system as that of (C).
3) (G) intersects (C) at a point of abscissa α. Verify that $2.5<\alpha<2.6$.
4) In all what follows, suppose that $\alpha=2.55$.
a- Give an economical interpretation to this value of α.
b- Determine the market equilibrium quantity.
c- Determine the value of the revenue corresponding to the equilibrium price.

I	Solution	Grade
1	$\mathrm{y}=1.214 \mathrm{x}+0.593$.	1
2	$\mathrm{x}=2.2$ gives $\mathrm{y}=3.263$ that is 3263000 LL.	1
3 a	If x hundreds of articles are produced, the number of articles sold is 0.8x hundreds or $80 x$ articles. The corresponding revenue is $80 \mathrm{x} \times 25000=2000000 \mathrm{x}=2 \mathrm{x}$ million LL. OR: $\mathrm{R}(\mathrm{x})=25000 \times \frac{80}{100} \times \frac{100 \mathrm{x}}{1000000}=2 \mathrm{x}$.	1.5
3 b	Profit= revenue - cost $=4.4-3.263=1.137$ that is 1137000 LL.	$2 \mathrm{~L}=1.214 \mathrm{x}+0.593 ; \mathrm{x}=0.754$.For a production of 75 articles, the profit is negative and the company starts to achieve profit for a production of 76 articles.

| II | Solution | | Grade |
| :---: | :---: | :---: | :---: | :---: |

IV	Solution	Grade
A1	$\lim _{x \rightarrow-2} f(x)=+\infty$. The line (d) with equation $x=-2$ is an asymptote to (C).	1
A2	$\mathrm{f}(-1)=8 ; \mathrm{f}(0)=5.616 ; \mathrm{f}(5)=2-\ln 7=0.05$.	1
A3	$\mathrm{f}^{\prime}(\mathrm{x})=-1-\frac{1}{2+\mathrm{x}}<0$x -2 $\mathrm{f}^{\prime}(\mathrm{x})$ - $\mathrm{f}(\mathrm{x})$ $+\infty \quad \longrightarrow$	1.5
A4		1
A5a	$F^{\prime}(x)=-x+8-\ln (x+2)-\frac{x+2}{x+2}=-x+7-\ln (x+2)=f(x)$	1
A5b	$A=\int_{0}^{1} f(x) d x=\left[-\frac{x^{2}}{2}+8 x-(x+2) \ln (x+2)\right]_{0}^{1}=\frac{15}{2}-3 \ln 3+2 \ln 2=5.59 \mathrm{u}^{2}$	1
B1	For a unit price of $2000 \mathrm{LL} ; \mathrm{x}=2 ; \mathrm{f}(2)=5-\ln 4=3.613$ that is 3613 files.	1.5
B2	See figure	1
B3	Let $\mathrm{h}(\mathrm{x})=\mathrm{g}(\mathrm{x})-\mathrm{f}(\mathrm{x}) \quad$ then, $\mathrm{h}(\mathrm{x})=\frac{7}{4} \mathrm{x}-6+\ln (2+\mathrm{x})$ $\mathrm{h}(2.5)=-0.12<0 ; \mathrm{h}(2.6)=0.07>0$; consequently $2.5<\alpha<2.6$.	1.5
B4a	For a unit price of 2550LL, the market is in equilibrium.	1
B4b	$\mathrm{g}(2.55)=2.912$ then the market equilibrium quantity is 2912 files.	1
B4c	$\mathrm{R}(2.55)=2.55 \times 2.912=7.4256$ Thus, the revenue corresponding to equilibrium is 7425600 LL .	1.5

