الدورة الإستثنانية للعام 2012	امتحانات الشهادة الثانوية العامة الفرع : إجتماع و إقتصاد	وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات
الاسم: الرقم:	مسابقة في مادة الرياضيات المدة ساعتان	عدد المسائل: أربع

إرشادات عامة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. - يستطيع المرشح الإجابة بالترتيب الذي يناسبه دون الالتزام بترتيب المسائل الوارد في المسابقة .

I- (4 points)

A factory produces household articles. The table below shows the total cost y_i ,

expressed in millions LL, of the production of x_i hundreds of articles.

Number of articles x _i	0.6	0.8	1.1	1.2	1.5	2
Total cost y _i	1.4	1.5	1.8	2.1	2.5	3

In this exercise, give your answers rounded to the nearest 10⁻³.

- 1) Let (D) be the regression line of y in terms of x in an orthogonal system of axes x'Ox, y'Oy. Write an equation of (D).
- 2) Estimate the total cost corresponding to a production of 220 articles.
- 3) The selling price of an article is 25 000LL, but only 80% of the produced articles are sold. a- Prove that the revenue is given by R(x) = 2x.
 - b- Estimate the profit achieved by this factory for the production of 220 articles.
 - c- In the previous system, consider the line (D') with equation y = 2x.

(D) and (D') intersect at a point S. Calculate the abscissa of S and give an economical interpretation to the value thus obtained.

II- (4 points)

Rami's store sells T-shirts and jackets of two different sizes: small and large.

- 70% of the articles are T-shirts
- 40% of the T-shirts are of small size
- 50% of the jackets are of large size.

A client chooses randomly an article from this store.

Consider the following events:

- T: « The chosen article is a T-shirt»
- J: « The chosen article is a jacket»
- S: « The chosen article is of small size».
- A-1) a- Verify that the probability $p(S \cap T)$ is equal to 0.28 and calculate $p(S \cap J)$.

b-Deduce p(S).

- 2) Knowing that the chosen article is of small size, calculate the probability that it is a T-shirt.
- B- The price of a T-shirt of small size is 30 000 LL and that of of a T-shirt of large size is 50 000 LL. The price of a jacket of small size is 40 000 LL and that of a jacket of large size is 50 000 LL. Let X be the random variable equal to the sum paid by the client for the purchase of the chosen article.
 - 1) Determine the probability distribution of X.
 - 2) Calculate the expected value E(X).
 - 3) Denote by N the number of articles sold in Rami's store .
 - a- Give, in terms of N, an estimation of the revenue of Rami's store.
 - b- If Rami is planning to make a revenue that exceeds 6 000 000 LL, what is the minimum number of T-shirts and that of jackets that he should sell?

III- (4 points)

At the beginning of a certain year, Fadi deposits a capital of 100 million LL in a bank, at an annual interest rate of 8%, compounded yearly.

At the end of every year, Fadi withdraws 10 million LL from his account to pay for a trip. Denote by U_n the amount, in millions LL, that Fadi has in his account at the end of the nth year after withdrawing the 10 million LL. (U₀=100).

- 1) Justify that $U_{n+1} = 1.08U_n 10$.
- 2) Verify that the sequence (U_n) is not geometric.
- 3) For all natural numbers n, let $V_n = U_n + \alpha$.

Calculate α so that (V_n) is a geometric sequence with common ratio 1.08.

In what follows, take $\alpha = -125$.

- 4) Calculate V_n and then U_n in terms of n.
- 5) Prove that (U_n) is decreasing.
- 6) In how many years will Fadi not be able, for the first time, to pay for his trip using this account?

IV- (8 points)

A- Consider the function f, defined over]-2, 5], by $f(x) = -x + 7 - \ln(2 + x)$, and denote

- by (C) its representative curve in an orthonormal system $(O; \vec{i}, \vec{j})$.
- 1) Determine lim f(x) and deduce an asymptote (d) to (C).
- $x \rightarrow -2$ 2) Calculate f(-1), f(0) and f(5).
- 3) Find f'(x) and set up the table of variations of f.
- 4) Draw (d) and (C).

5) a-Prove that the function F defined over]-2; 5] by $F(x) = -\frac{x^2}{2} + 8x - (x+2)\ln(x+2)$ is an

antiderivative of f.

- b- Deduce the area of the region bounded by (C), the axis of abscissas and the two lines with equations x = 0 and x = 1.
- **B-** A company manufactures files with a unit price x expressed in thousands LL with $0.3 \le x \le 5$.

The demand, expressed in thousands of units, is modeled by f(x).

The supply g(x), expressed in thousands of units, is given by $g(x) = \frac{3}{4}x + 1$.

1) Calculate the demand corresponding to a unit price of 2 000LL.

- 2) Draw the graphical representation (G) of g in the same system as that of (C).
- 3) (G) intersects (C) at a point of abscissa α . Verify that 2.5 < $\alpha~<~2.6$.
- 4) In all what follows, suppose that $\alpha = 2.55$.

a-Give an economical interpretation to this value of $\boldsymbol{\alpha}$.

- b- Determine the market equilibrium quantity.
- c- Determine the value of the revenue corresponding to the equilibrium price.

الدورة الإستثنائية للعام 2012	امتحانات الشهادة الثانوية العامة	وزارة التربية والتعليم العالي
مشروع معيار التصحيح	الفرع : إجتماع و إقتصاد	المديرية العامة للتربية
		دائرة الامتحاثات

Ι	Solution	Grade
1	y = 1.214x + 0.593.	1
2	x = 2.2 gives $y = 3.263$ that is 3263000LL.	1
3a	If x hundreds of articles are produced, the number of articles sold is 0.8x hundreds or 80x articles. The corresponding revenue is $80x \times 25000 = 2000000x = 2x$ million LL. OR: $R(x) = 25000 \times \frac{80}{100} \times \frac{100x}{1000000} = 2x$.	1.5
3b	Profit= revenue- $cost = 4.4 - 3.263 = 1.137$ that is 1137000 LL.	1.5
3c	2x = 1.214x + 0.593; $x = 0.754$. For a production of 75 articles, the profit is negative and the company starts to achieve profit for a production of 76 articles.	2

II			Solution	Grade
	T5	Ala	$\begin{split} P(S \cap T) &= P(T) \times P(S/T) = 0.7 \times 0.4 = 0.28. \\ P(S \cap J) &= P(J) \times P(S/J) = 0.3 \times 0.5 = 0.15. \end{split}$	1
	0.7	A1b	$P(S) = P(S \cap T) + P(S \cap J) = 0.28 + 0.15 = 0.43.$	0.5
	0.3 J <u>0.5</u> s	A2	$P(T/S) = \frac{P(T \cap S)}{P(S)} = \frac{0.28}{0.43} = \frac{28}{43} = 0.651.$	1
B 1	The possible values of X are: 30 000, 4 X_i $P(X_i)$	40 000 30 0 0.2	0, 50 000. 000 40 000 28 0.15	1.5
B2	$E(X) = 30\ 000 \times 0.28 + 40\ 000 \times 0.15$	+500	$000 \times 0.57 = 42\ 900.$	0.5
B3a	The revenue is $E(X) \times N = 42900$ N.			1
B 3b	42 900 N > 6 000 000 so N > 139. 8. C But , since there are 70% of T- shirts ar Hence, Rami should sell a minimum o	onseq nd 30 of 987	uently, a minimum of 140 articles should be sold. % of jackets. Γ- shirts and 42 jackets.	1.5

III	Solution	Grade
1	$U_{n+1} = U_n + 0.08 \times U_n - 10 = 1.08U_n - 10.$	0.5
	$U_1 = 1.08 \times 100 - 10 = 98 U_2 = 1.08 \times 98 - 10 = 95.84.$	
2	Since $\frac{U_2}{U_1} \neq \frac{U_1}{U_o}$, then (U _n) is not a geometric sequence.	1
3	$\frac{V_{n+1}}{Vn} = \frac{U_{n+1} + \alpha}{U_n + \alpha} = \frac{1.08U_n - 10 + \alpha}{U_n + \alpha} = 1.08 ; 0.08\alpha = -10 ; \alpha = -125.$	1.5
1	$V_n = V_o \times q^n$ with $V_o = U_o - 125 = 100 - 125 = -25$	1
+	$V_n = -25 \times (1.08)^n$. $U_n = V_n + 125 = -25 \times (1.08)^n + 125$	1
5	$U_{n+1} - U_n = -25 \times (1.08)^{n+1} + 25 \times (1.08)^n = 25 \times (1.08)^n \times (-0.08) < 0.$	1
5	(U _n) is decreasing.	
6	$U_n < 10 \ ; -25 \times (1.08)^n \ + 125 < 10 \ ; \ n(ln1.08) > ln \frac{115}{25} \ ; \ n > 19.8.$	2
	Hence, after 20 years.	

IV	Solution	Grade
A1	$\lim_{x\to -2} f(x) = +\infty$. The line (d) with equation $x = -2$ is an asymptote to (C).	1
A2	$f(-1) = 8$; $f(0) = 5.616$; $f(5) = 2 - \ln 7 = 0.05$.	1
A3	$f'(x) = -1 - \frac{1}{2 + x} < 0 \qquad \qquad \frac{x - 2 \qquad 5}{f'(x) \qquad - \\f(x) \qquad + \infty \qquad 0.05}$	1.5
A4		1
A5a	$F'(x) = -x + 8 - \ln(x+2) - \frac{x+2}{x+2} = -x + 7 - \ln(x+2) = f(x)$	1
A5b	$A = \int_{0}^{1} f(x) dx = \left[-\frac{x^{2}}{2} + 8x - (x+2)\ln(x+2) \right]_{0}^{1} = \frac{15}{2} - 3\ln 3 + 2\ln 2 = 5.59 u^{2}$	1
B1	For a unit price of 2 000LL; $x = 2$; $f(2) = 5 - \ln 4 = 3.613$ that is 3613 files.	1.5
B2	See figure	1
В3	Let $h(x) = g(x) - f(x)$ then, $h(x) = \frac{7}{4}x - 6 + \ln(2 + x)$ $h(2.5) = -0.12 < 0$; $h(2.6) = 0.07 > 0$; consequently 2.5 < α <2.6.	1.5
B4a	For a unit price of 2550LL, the market is in equilibrium.	1
B4b	g(2.55) = 2.912 then the market equilibrium quantity is 2912 files.	1
B4c	$R(2.55) = 2.55 \times 2.912 = 7.4256.$ Thus, the revenue corresponding to equilibrium is 7 425 600 LL.	1.5